UNIT 3
UNIX FILE STRUCTURE

* The UNIX file system is a hierarchical
arrangement of directories and files.

* Everything starts in the directory called root,
whose name is the single character /.

/{ro0l)

S

bin LI Ib home
(dew:es) (syrstem files) (yram-y/\ (libraries) (W?BTEE)
P sh k bin b include fied heken

(progiams) (libraries) (headers) (ser) (user)

Vi sidio h hello.c

DIRECTORIES

A directory is a file that contains directory
entries.

 The attributes of a file are such things as the
type of file (regular file, directory), the size of
the file, the owner of the file, permissions for
the file (whether other users may access this
file), and when the file was last modified.

e The stat and fstat functions return a structure
of information containing all the attributes of
a file.

* Filename: -The names in a directory are called
filenames.

 The only two characters that cannot appear in
a filename are the slash character (/) and the
null character.

* The slash separates the filenames that form a
pathname (described next) and the null
character terminates a pathname.

e Pathname: -A sequence of one or more
filenames separated by slashes and optionally
starting with a slash, forms a pathname.

* A pathname that begins with a slash is called
an absolute pathname; otherwise, it’s called a
relative pathname.

* Working Directory: - Every process has a
working directory, sometimes called the
current working directory.

* A process can change its working directory
with the chdir function.

* Home Directory: - When we log in, the
working directory is set to our home directory.
Our home directory is obtained from our entry
in the password file.

FILES AND DEVICES

* Files are stored on devices such as Hard Disks
and Floppy Disks.

* Operating System defines a File System on
Devices which is usually Hierarchical file
system including UNIX.

* FILE SYSTEM- A Group of files and its relevant
information forms File System and is stored on
Hard Disk.

* On a Hard Disk, a Unix File system is stored in
terms of blocks where each block is equal to
512 bytes.

* The Block size can be increased up to 2048
bytes.

s W

Boot block
Super block
| nodes
Data blocks.

]]]
R. B. 5. B. Inodes - Data Blocks

* Boot Block: - A boot block located in the first
few sectors of a file system. The boot block
contains the initial bootstrap program used to
load the operating system.

* Super Block: - A super block describes the
state of the file system: the total size of the
partition, the block size, pointers to a list of
free blocks, the inode number of the root
directory, magic number, etc.

* | — nodes: - There is a one to one mapping of
files to inodes and vice versa.

 Thus, while users think of files in terms of file
names, Unix thinks of files in terms of inodes.

 Data blocks: - Data blocks containing the
actual contents of files

SYSTEM CALLS

* In computing, a system call is the
programmatic way in which a computer
program requests a service from the kernel of
the operating system it is executed on.

* A system call is a way for programs to interact
with the operating system.

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
- Implementation
» of open ()
' system call

return

Types of System Calls: -
There are 5 different categories of system calls

Process control: end, abort, create, terminate,
allocate and free memory.

File management: create, open, close, delete,
read file etc.

Device management
Information maintenance
Communication

S.NO | Types of System calls WINDOWS UNIX
Process Control CreateProcess() fork()
1 ExitProcess() exit()
WaitForSingleObject() wait()
File Manipulation CreateFile() open()
5 ReadFile() read()
WriteFile() write()
CloseHandle{) close()
Device Manipulation SetConsoleMode() ioctli)
3 ReadConsole() read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
4 | Maintenance SetTimer() alarm()
Sleep() sleep()
Communication CreatePipe() pipe()
3 CreateFileMapping() shmget()
MapViewOfFile() mmap()
Protection SetFileSecurnitv() chmod()
il [nitlializeSecuritvDescriptor{) | umask()

SetsecurityDescriptorGroup()

chownl()

File structure related system calls

These calls return a file descriptor that
identifies the I/O channel.

creat()
open()
close()
read()
write()

Iseek()

e dup()
* link()
e unlink()

e stat()

e fstat()

e access()
 chmod()
e chown()
e umask()
* joctl()

LIBRARY FUNCTIONS

* For calculating string length, there exists a
standard function like strlen(), for opening a
file, there exists functions like open() and

fopen().

e We call these functions as standard functions
as any application can use them.

e These standard functions can be classified into
two major categories:

* Library function calls.
e System function calls.

* Library functions Vs System calls: -

 The functions which are a part of standard C
library are known as Library functions.

* For example the standard string manipulation
functions like strcmp(), strlen() etc are all
library functions.

* The functions which change the execution
mode of the program from user mode to
kernel mode are known as system calls.

* These calls are required in case some services
are required by the program from kernel.

* For example, if we want to change the date
and time of the system or if we want to create
a nhetwork socket then these services can only
be provided by kernel and hence these cases
require system calls.

* For example, socket() is a system call.

Types of library functions: -

Library functions can be of two types:

Functions which do not call any system call.
Functions that make a system call.

 There are library functions that do not make
any system call.

* For example, the string manipulation
functions like strlen() etc fall under this
category.

* Also, there are library functions that further
make system calls, for example the fopen()
function which a standard library function but
internally uses the open() system call.

#include <stdio.h>
int main ()

{

printf ("Greetings");

return o;
}

user
mode 4

standard C library
kKernel
mode

write ()

write ()
system call

R

LOW LEVEL FILE ACCESS

Provides direct access to files and devices.

Is complex (Buffer
the programmer)

management is to done by

When using 1/O functions, low-level 1/O is

faster as comparec

to the high-level I/0O.

Uses a “file descri
the file.

otor” to track the status of

Low-level 1/O functions are used for:

Accessing files and devices directly.

Reading binary files in large chunks.

Performing
efficiently.

1/0

operations

quickly

and

* The low-level I/0 system in C provides
functions that can be used to access files and
devices.

— Open()
— Close()
— Read()
— Write()

open()

* Used to Open the file for reading, writing or
both.

Svotax in C language

anchudesys/types I

aAnchudsys'sta b

anchde <fonfl >

int open (const cha™ Path, mf flags [, inf mock: |);

Parameters: -

Path: - path to file which you want to use.

Use absolute path begin with “/”, when you
are not work in same directory of file.

Use relative path which is only file name with
extension, when you are work in same
directory of file.

Flags: - How you like to use

O _RDONLY: read only

O_WRONLY: write only

O_RDWR: read and write

O_CREAT: create file if it doesn’t exist

O _EXCL: prevent creation if it already exists

creat()

e Used to Create a new empty file.

st n C langae:

ottt e e o

Parameter: -

* filename: - name of the file which you want to
create

* mode: - indicates permissions of new file.

* Returns: -

e return first unused file descriptor (generally 3
when first creat use in process beacuse 0, 1, 2

fd are reserved).

* return -1 when error

read()

* From the file indicated by the file descriptor
fd, the read() function reads cnt bytes of input
into the memory area indicated by buf. A
successful read() updates the access time for

the file.

svtaxm C language

Parameters

fd: file descriptor

buf: buffer to read data from
cnt: length of buffer

File descriptors
* To kernel all open files are referred to by file
descriptors.

* A file descriptor is a non negative integer.

* When we open an existing or create a new
file, the kernel returns a file descriptor to a
process.

Each UNIX process has 20 file descriptors and
it disposal, numbered 0 through 19 but it was
extended to 63 by many systemes.

The first three are already opened when the
process begins

O: the standard input
1: the standard output

2: the standard error output.

Returns: How many bytes were actually read
return Number of bytes read on success
return O on reaching end of file

return -1 on error

return -1 on signal interrupt

* Important points

* buf needs to point to a valid memory location
with length not smaller than the specified size
because of overflow.

* fd should be a valid file descriptor returned
from open() to perform read operation
because if fd is NULL then read should

generate error.

* cnt is the requested number of bytes read,
while the return value is the actual number of
bytes read. Also, sometimes read system call
should read less bytes than cnt.

write

* Writes cnt bytes from buf to the file or socket
associated with fd. cnt should not be greater
than INT_MAX (defined in the limits.h header
file). If cnt is zero, write() simply returns O
without attempting any other action.

zinclude <fentl b=

Wiyl

size twnte (int fd. void® buf, size t ent):

Parameters
* fd: file descriptor
* buf: buffer to write data to
e cnt: length of buffer

Returns: How many bytes were actually
written?

return Number of bytes written on success
return 0 on reaching end of file

return -1 on error

return -1 on signal interrupt

close

* Tells the operating system you are done with a

file descriptor and Close the file which pointed
by fd.

Svontax mm C language

Finclude <tentl h=

int close(int fd):

Parameter
fd :file descriptor

Return
0 on success.
-1 on error.

Iseek

* The UNIX system file system treats an ordinary
file as a sequence of bytes. Generally, a file is
read or written sequentially -- that is, from
beginning to the end of the file.

* Sometimes sequential reading and writing is
not appropriate. Random access 1/O is
achieved by changing the value of this file
pointer using the Iseek() system call.

* Syntax: -

Fnclude <sys/types.h:
#include <unistd b

off t lseek(mt filcs, off t offset, It whence)

* Description: -

* The Iseek() function repositions the offset of
the open file associated with the file
descriptor fildes to the
argument offset according to the
directive whence as follows:

Tag Description

SEEK SET

The offzet 15 set to offser bytes.

SEEK CUR

The offset 15 set to 1ts current location plus
offset bvtes.

SEEK_END

The offset 15 set to the size of the file plus
offset bvtes.

e Return Value: -

 Upon successful completion, Iseek() returns
the resulting offset location as measured in
bytes from the beginning of the file.
Otherwise, a value of (off t)-1 is returned
and errno is set to indicate the error.

* Notes: -

* When converting old code, substitute values
for whence with the following macros:

old e
0 SEEK._SET
1 SEEK _CUR
2 SEEK._END

L_SET |SEEK SET
L _INCR |SEEK CUR
L _XTND | SEEK_END

stat, fstat, Istat System Calls

stat(): - stat() function is used to access the
files information such as the type of file owner
of the file, file access permissions, file size etc.

Syntax: -
#include<sys/types.h>
#include<sys/stat.h>

int stat(const char *filename, struct stat
*buff);

* Given a filename, stat() function will retrieve
the files information into a stat structure
pointed to by ‘buff’.

struct stat {

I

dev t st dev;
ino t st _ino;
mode t st mode;
nlink t st nlink;
uid t st uid;
gid t st_gid,
dev t st_rdev,
off t st size,
blksize t st blksize;
blkent t st blocks;
time t st atime;
time t st mtime;
time t st ctime;

JI.I'J'I'E
JI.I'J'I'E
JI,I'J'I'E
JI.I'J'I'E
JI.I'I'I':
JI.I'I'I'E
Ju"l*
JI.I'J'I'!
JI.I'J'I'E
JI.I'J'I'E
JI.I'J'I'E
JI,I'J'I'E
JI.I'J'I'E

ID of device containing file */
inode number */

protection */

number of hard links */

user ID of owner */

group ID of owner */

device ID (if special file) */
total size, in bytes */
blocksize for filesystem I/0 */
number of blocks allocated */
time of last access */

time of last modification */
time of last status change */

fstat(): - fstat() function obtains the
information about the file that is already
open.

Syntax: -

#include<sys/types.h>
#include<sys/stat.h>

int fstat(int fd, struct stat *buff);

e fstat() retrieves information about the file
opened with file descriptor fd into the stat
structure pointed to by ‘buff’.

Istat(): - The Istat() function is similar to the
stat() function, that is, it is also used to access
the information about a named file.

Syntax: -
#include<sys/types.h>
#include<sys/stat.h>

int Istat(const char *filename, struct stat
*buff);

* The Istat() retrieves the information about the

filename into a stat structure pointed to by
buff.

» |stat() is identical to stat(), except that
if path is a symbolic link, then the link itself is
stat-ed, not the file that it refers to.

e Returns ‘O’ on success and ‘-1’ on error.

ioctl()

e The ioctl() function manipulates the
underlying device parameters of special files.

* |n particular, many operating characteristics of
character special files (e.g. terminals) may be
controlled with ioctl() requests.

Syntax: -
#tinclude <sys/ioctl.h>
int ioctl(int d, int request, ...);

Description: -

The argument d must be an open file
descriptor.

The second argument is a device-dependent
request code.

* The third argument is an untyped pointer to
memory. It’s traditionally char *argp (from the
days before void * was valid C)

dup and dup2 system calls

e dup(): - The dup() system call creates a copy of
a file descriptor.

e [t wuses the Ilowest-numbered unused
descriptor for the new descriptor.

e |f the copy is successfully created, then the
original and copy file descriptors may be used
interchangeably.

They both refer to the same open file

description and thus share file offset and file
status flags.

Syntax: -

it dip(int oldfd):

oldfd: 0ld f1le descriptor whose copy 15 to be Creter

* dup2(): - The dup2() system call is similar to
dup() but the basic difference between them
is that instead of using the lowest-numbered
unused file descriptor, it uses the descriptor
number specified by the user.

* Syntax: -

nt duplintoldfd mtnewtd)

oldfd:old fl descrpton
newtdnew fle descriptor which 1s used by dup () to create a copy.

link() system call

* link() creates a new link (also known as a hard
link) to an existing file.

* Syntax: -
#include <unistd.h>

int link(const char *oldpath, const char
*newpath);

* Description: -

* |If newpath exists it will not be overwritten.
This new name may be used exactly as the old
one for any operation; both names refer to
the same file (and so have the same
permissions and ownership) and it s

impossible to tell which name was the
‘original’.

 Return Value: - On success, zero is returned.
On error, -1 is returned, and errno is set
appropriately.

* Note: - Hard links, as created by link(), cannot
span file systems. Use symlink() if this is
required.

symlink()

* Syntax: -
 #include <unistd.h>

* int symlink(const char *oldpath, const char
*newpath);

* Description: -

e symlink() creates a symbolic link
named newpath which contains the

string oldpath.

unlink() system call

e delete a name and possibly the file it refers to
* Syntax: -

#include <unistd.h>
int unlink(const char *pathname);

Description
* unlink() deletes a name from the file system.

* |f that name was the last link to a file and no
processes have the file open the file is deleted
and the space it was using is made available
for reuse.

Return Value

* On success, zero is returned. On error, -1 is
returned, and errno is set appropriately.

UNIT 4
UNIX PROCESS

* A process, in simple terms, is an instance of a
running program.

 |f, for example, three people are running the
same program simultaneously, there are three
processes there, not just one.

* The operating system tracks processes
through a five-digit ID number known as
the PID(Process Identification Number) or
the process ID.

* Each process in the system has a unique PID.

* Unix is a timesharing system, which means
that the processes take turns running. Each
turn is a called a time slice.

* On most systems this is set at much less than
one second.

* The reason this turns-taking approach is used
is fairness. We don’t want a 2-second job to
have to wait for a 5-hour job to finish

What is process

* A process IS a program in execution In
memory or in other words, an instance of a
program in memory.

* Any program executed creates a process.

A program can be a command, a shell script,
or any binary executable or any application.

* However, not all commands end up in creating
process, there are some exceptions.

* Similar to how a file created has properties
associated with it, a process also has lots of
properties associated to it.

Process attributes:

A process has some properties associated to
It:

2
O

.U
2
O

-
-
<

=
O

PID: - Process-Iid.

 Every process created in Unix/Linux has an
identification number associated to it which is
called the process-id.

* The PID is unique for a process at any given
point of time. However, it gets recycled.

PPID : Parent Process Id:

* Every process has to be created by some other
process.

* The process which creates a process is the
parent process, and the process being created
is the child process.

e The PID of the parent process is called the
parent process id(PPID).

TTY:

Terminal to which the process is associated to.
Every command is run from a terminal which
is associated to the process.

However, not all processes are associated to a
terminal. There are some processes which do
not belong to any terminal. These are called
daemons.

UID: User Id-

* The user to whom the process belongs to. And
the user who is the owner of the process can
only kill the process(Of course, root user can
kill any process).

* When a process tries to access files, the
accessibility depends on the permissions the
process owner has on those files.

File Descriptors:

* File descriptors related to the process: input,
output and error file descriptors.

* List the processes:

[s ps
PID Y TIME CMD
1315012 pts/1 0:00 -ksh

2490430 pts/1 0:00 S

* ps is the Unix command which lists the active
processes and its status.

* The ps command output shows 4 things:

PID : The unique id of the process

TTY: The terminal from which the process or
command is executed.

TIME: The amount of CPU time the process
has taken

CMD: The command which is executed.

e 2 processes are listed in the above case:

1. -ksh : The login shell, which we are working
on, is also a process which is currently

running.

2. ps : The ps command which we executed to
get the list also creates a process.

Parent & Child Process:

Every process in Unix has to be created by some
other process.

Hence, the ps command is also created by some
other process.

The 'ps' command is being run from the login
shell, ksh.

The ksh shell is a process running in the memory
right from the moment the user logged in.

* So, for all the commands triggered from the
login shell, the login shell will be the parent
process and the process created for the
command executed will be the child process.

* In the same lines, the 'ksh' is the parent
process for the child process 'ps'.

* S ps-o pid,ppid,args

PID PPID COMMAND
2666744 3317840 ps -o pid,ppid,args
3317840 1 -ksh

The PID of the ksh is same as the PPID of the ps
command which means the ksh process is the
parent of the ps command. The '-o0' option of
the ps command allows the user to specify
only the fields which he needs to display.

Init Process:

 |f all processes of the user are created by the
ogin shell, who created the process for the

ogin shell?

* |[n other words, which is the parent process of
the login shell?

* When the Unix system boots, the first process
to be created is the init process.

* This init process will have the PID as 1 and
PPID as 0.

* All the other processes are created by the init
process and gets branched from there on.

* Note in the above command, the process of
the login shell has the PPID 1 which is the PID
of the init process.

PROCESS STRUCTURE

* The kernel has a process table where it stores
the state of the process and other information
about the process.

* The information of the entry and the u-area of
the process combined is the context of the
process.

PROCESS STATES
* Every process in the system can be in one of six states.
* The six possible states are as follows:

1) Running, which means that the process is currently
using the CPU.

2) Runnable, which means that the process can make
use of the CPU as soon as it becomes available.

3) Sleeping, which means that the process is waiting
for an event to occur.

For example, if a process executes a “read()” system
call, it sleeps until the 1/0 request completes.

4) Suspended, which means that the process

has been “frozen” by a signal such as
SIGSTOP.

It will resume only when sent a SIGCONT
signal.

5) Idle, which means that the process is being
created by a “fork() system call and is not yet
runnable.

6) Zombified, which means that the process has
terminated but has not yet returned its exit
code to its parent.

* A process remains a zombie until its parent
accepts its return code using the “wait()”
system call.

G

Signal Signal

yd
Initialize ~ Mlocated ™\ Exit
CPU

< N
IdMnable @meiﬂed

E;;R ﬂm on

oCcurs event
Sleeping

-"‘-|_|_l_._._._,_|-"'-

| Process States |

PROCESS COMPOSITION

Every process is composed of several different
pleces:

a code area, which contains the executable(text)
portion of a process

a data area, which is used by a process to
contain static data

a stack area, which is used by a process to store
temporary data

a user area, which holds housekeeping
information about a process

page tables, which are used by the memory
management system

e User Area

* Every process in the system has some
associated “housekeeping” information that is
used by the kernel for process management.

* This information is stored in a data structure
called a user area. Every process has its own
user area.

* User areas are created in the kernel’s data
region and are only accessible by the kernel;
user processes may not access their user
areas.

The Process Table

* There is a single kernel data structure of fixed
size called the process table that contains one
entry for every process in the system.

* The process table is created in the kernel’s
data region and is accessible only by the
kernel.

Each entry contains the following information
about each process:

its process |ID(PID) and parent process
ID(PPID)

its real and effective user ID(UID) and group
ID(GID)

its state (running, runnable, sleeping,
suspended, idle, or zombified)

the location of its code, data, stack, and user
areas

a list of all pending signals

Process table Process 34)-

PID PPID Stat

34 | 12 R Process 48 |,

12 | 1 R ~

48 | 1

LN

R : Running, S: Sleeping

1 - R o Process 1 ’-

Shared by
. processes

Process 12 b

UNIT 5
SIGNALS

Program must sometimes deal with unexpected or
unpredictable events, such as:

» a floating point error

» a power failure

» an alarm clock “ring”

» the death of a child process

» a termination request from a user(
i.e.,Control-C)

» asuspend request from a user (i.e., Control-Z
)

* These kind of events are sometimes called
interrupts, as they must interrupt the regular
flow of a program in order to be processed.

* When UNIX recognizes that such an event has
occurred, it sends the corresponding process a
signal.

* There is a unique, numbered signal for each
possible event.

For example:-

* if a process causes a floating point error, the
kernel sends the offending process signal
number 8:

Signal " Process
#8

 Any process can send any other process a
signal, as long as it has permission to do so.

A programmer may arrange for a particular
signal to be ignored or to be processed by a
special piece of code called a signal handler.

* The process that receives the signal
1) suspends its current flow of control,
2) executes the signal handler,

3) and then resumes the original flow of
control when the signal handler finishes

* Signals are defined in
“fusr/include/sys/signal.h”.

or #include<signal.h>

* The default handler usually performs one of
the following actions:

P terminate the process and generate a core file (dump)
» terminate the process without generating a core image file
(quit)
» ignore and discard the signal (ignore)
» suspend the process (suspend)
» resume the process

e Sending Signals

* There are several methods of delivering
signals to a program or script. One of the most
common is for a user to type CONTROL-C or
the INTERRUPT key while a script is executing.

* When you press the Ctrl+C key, a SIGINT is
sent to the script and as per defined default
action script terminates.

* The other common method for delivering
signals is to use the kill command, the syntax
of which is as follows -

S kill -signal pid

* Here signal is either the number or name of

t
t

ne signal to deliver and pid is the process ID

nat the signal should be sent to.

* For Example -

 Skill -1 1001

* The above command sends the HUP or hang-
up signal to the program that is running
with process ID 1001.

* To send a kill signal to the same process, use
the following command

« Skill-9 1001

* This kills the process running with process ID
1001.

LIST OF SIGNALS

e - Here’s a list of the System V predefined
signals, along with their respective macro
definitions, numerical values, and default
actions, as well as a brief description of each:

Macro # Default Description

SIGHUP | quit hang up

SIGINT 2 quut interrupt

SIGQUIT 3 dump quit

SIGILL 4 dump llegal mstruction

SIGTRAP 5 dump trace trap(used by debuggers)

SIGABRT 6 dump abort

SIGEMT 7 dump emulator trap nstruction

SIGFPE 8 dump arithmetic execution

SIGKILL 9 quat kill{ cannot be caught, blocked, or 1gnored)
SIGBUS 10 dump bus error(bad format address)
SIGSEGV |1 dump segmentation violation(out-of-range address)
SIGSYS 12 dump bad argument to system call

SIGPIPE 13 quut wrile on a pipe or other socket with no one to

read 1t.

SIGALEM 14 quit alarm clock

SIGTERM 15 quut software termination signal(default signal sent by kall)
SIGUSR1 16 quit user signal 1

SIGUSR2 17 quut user signal 2

SIGCHLD 18 1Znore child status changed
SIGPWR 19 1Znore power fail or restart
SIGWINCH 20 1gnore window size change
SIGURG 21 1Znore urgent socket condition
SIGPOLL 22 1gnore pollable event

SIGSTOP 23 quit stopped(signal)

SIGSTP 24 quit stopped(user)

SIGCONT 25 1gnore continued

SIGTTIN 26 quit stopped(tty mput)
SIGTTOU 27 quit stopped(tty output)
SIGVTALRM 28 quit virtual timer expired
SIGPROF 29 quit profiling timer expired
SIGXCPU 30 dump CPU time limit exceeded

SIGXFSZ 31 dump file size limit exceeded

* Unreliable Signals
Def:. Unreliable Signals..

« Signals could get lost without notice by
process

Why?

* The action for a signal was reset to its

defau
e The

t each time the signal occurred.

process could only ignore signals,

iInstead of turning off the signals

Interrupted System Calls

* |n earlier UNIX systems, if a process caught a
signal while the process was blocked in a
"slow" system call, the system call was
interrupted.

* The system call returned an error
and errno was set to EINTR.

* This was done under the assumption that
since a signal occurred and the process caught
it, there is a good chance that something has
happened that should wake up the blocked
system call.

Slow system calls

e The system calls are divided into two
categories: the "slow" system calls and all the
others.

* The slow system calls are those that can block
forever:

* The system calls that were automatically
restarted are:

— joctl
— read
— readv
— write

— Writev

* Functions that are always interrupted when a
signal is caught.
— wait
— waitpid

kill and raise Functions

* The kill function sends a signal to a process or
a group of processes.

* The raise function allows a process to send a
signal to itself.

#include <gignal h>

int kill(pid. t pid. int signo);
int raise(int signo);

/* Both return: 0 if OK, -1 on error */

e “kill()” sends the signal with value sigCode to
the process with PID pid.

 Conditions on pid:

1. pid >0 : signhal sent to the process with
UID pid

2. pid == 0: signal sent to “all” processes

with the same gid of the sender
(excluding proc 0, 1, 2)

3. pid <0: signal sent to “all” processes
with process gid == |pid]

The call:
ise(si):
15 equivalent to the call:

kill(getpid(), signo);

* raise() function can only send a signal to the
program that contains it.

* raise() cannot send a signal to other
processes.

* To send a sighal to other processes, the
system call kill() should be used.

alarm and pause Functions

 The alarm function sets a timer that will expire
at a specified time in the future.

* When the timer expires, the SIGALRM signal is
generated.

* If we ignore or don’t catch this signal, its
default action is to terminate the process.

#include <ynistd,h>
unsigned int alarm (unsigned int seconds);

» Seconds specifies expiration delay.

« alarm(0) cancels the alarm if not yet
expired. Returns number of seconds left.

#include <stdio.h>

main()

{

alarm(3); /* Schedule an alarm signal in three
seconds */

printf(“Looping forever... \n");

w

\n”);
}

nile(1)

orintf(“This line should never be executed

Shm > mn the pogam,
Looping forever..
Almclock -~ occurs three seconds later.

{.

* The pause function suspends the calling
process until a signal is caught.

#include <yunistd.h=

int pause(void);

abort Function

* The abort function causes abnormal program
termination.

#include <stdlib,.h=>
vold abort(void);

* The abort function sends the SIGABRT signal
to the caller. Processes should not ignore this
signal.

#include <stdio.h>
#include <stdlib.h>
int main ()
{
FILE *fp;
printf("Going to open nofile.txt\n");
fp = fopen("nofile.txt","r");
if(fp == NULL)
{
printf("Going to abort the program\n");
abort();
}
printf("Going to close nofile.txt\n");
fclose(fp);
return(0);

Sleep function

* sleep for the specified number of seconds.

#include <unistd,h>
unsioned int sleep(unsigned int seconds);

SLEEP COMMAND SUPPORTS BELOW UNITS

s for seconds; this is a default one if you don’t
specify any letter after the integer.

m for minutes.
h for hours.
d for days.

* Delay execution of a command by one hour or
even for a day.

sleep 1h
sleep 1d

© N o LA WD

who
date
tty
stty
bc
cal

Man

BASIC UTILITIES

9. passwd
10. clear
11. uname
12. echo

13. script

BASIC UTILITIES

1. who

* The who command displays all users currently
logged into the system.

* Example : Swho

Option:-

e -u:- Just knowing that someone is logged in is
not sufficient, however. You also want to know

that he or she is active (or) not. This is know
as idle time.

* Example:-S who -u

e -uH:- Another helpful option, especially for
new UNIX users, is the header.

* Example:- S who —uH

who am i

* |f you key who am i as the command, the
system return your user id.

* Example:- Swho amii

nixcrafténas0l:~§ who

vivek pts/(2014=01-27 14110 (192.168.1.6)
root pts/l 2014-01+27 14:51 (192,168,1.6)
nixcraft pts/2 2014=01-27 14152 (192,168.1.6)
nixcrafténas0l:~$ who ~H

NAME LINE TIME COMMENT
vivek pts/0 2014=01-27 14210 (192.168.1.6)

root pts/l 2014=01-27 14351 (192.168.1.6)
nixcraft pts/? 2014=01-27 14152 (192,166.1.6)
nixcrafténas0li~§ who «H -u

NAME LINE TIME IDLE

vivek pts/(2014=01-27 14:10 old

root pts/l 2014=01-27 14151

nixcraft pts/2 2014=01-27 14352

Department of Information technology

List of logged
1h users

PID COMMENT
2952 (192,168.1.,6)
3149 (192,168.1.6)
3977 (192,168.1.6)

2. Date

 date command is used to display the system
date and time.

e Date command is also used to set date and
time, but only by a system administrator.

* Syntax:-
date [OPTION] ... [+FORMAT]

Options with Examples:-

e date (no option):- With no options, the date
command displays the current date and time.

Example:- S date

e -u:- Displays the time in GMT (Greenwich
Mean Time) / UTC(Coordinated Universal
Time).

* Example:- S date —u

Department of Information technology 149

List of Format specifies used with

date command:

TABLE 1.1 date Arguments
Format | i
Code Explanatlon el o
~a | abbreviated Wéekday name. such as Mon |
A | full weekday name, such as Monday
b | abbreviated month name, such as Jan B
B | full month name, such as January ’:“ii:
d | day of the month with two digits (leading zeros), such as 01,402, 5581 =
e | day of the month with Spaces replacing leading zeros, such as 2.3 “" |
| Continued!
150

Department of Information technology

TABLE 1.1

date Arguments .

~Format | R
_ Code | Explanation e i T
Dv date in the format mm/dd/yy, such as 01/01/99
H military time two-digit hour, such as 00, 01, . . ., 23
L civilian time two-digit hour, such as 00, 01, ..., 12
3 Julian date (Day of the year), such as 001, 002, . . ., 366
m numeric two-digit month, such as 01, 02, . . ., 12
M two-digit minute, such as 00,01, ...,59
n newline character (used to display date on multiple lines)
P display am or pm
5k time in format hour:minute:second with am/pm, such as 01:15:33 pm
R time in format hour:minute, such as 13:15
= seconds as a decimal number [00-61], allows for leap seconds
E tab character '
46, 1 time in format hour:minute:second, such as 13:15:48
U week number of year, such as 00,01, ..., 53
= week of year [00—53] with Monday bemg ﬁrst day of week; all days preceding the first
..+ - | Sunday of the year are in week 0
: A [t PR qentury (offset from %C) as a decimal number [00—99]
Ty | year as ccyy (4 digits)
: Z time zone name, or no characters if no time zone is detemnét?}e r

et
e

Syntax:-
e Sdate “+Today’s date is : %D . The time is : %T”

* For the date command, the format is a plus
signh (+) followed by the text and a series of
format codes all enclosed in double quote
marks.

 Each code is preceded by a percentage sign
(%) that identifies it as a code.

Output:-
e Today’s date is :06/12/19.The time is: 08:29:30

3. tty

* In UNIX, everything is a file. Even any
hardware device connected to the system is
represented as a special file. So that a
terminal is also represented as a file.

e tty is short for teletype, but it's more
popularly known as terminal.

* The tty command basically prints the filename
of the terminal connected to standard input.

Example:-
* Stty
/dev/ttygO

* The output shows that the name of the
terminal is /dev/ttyq0 (or) more simply, ttyqO.

* [n UNIX, the name of a terminal usually has
the prefix tty.

4. Set Terminal (stty) Command

e The set terminal command sets or unsets
selected terminal input/output options.

* When the terminal is not responding properly,
the set terminal command can be used to
reconfigure it.

Syntax:- S stty

* |f we use the stty without any options or
arguments, it shows the current common
setting for your terminal.

Set terminal with optionss-

e The set terminal command can be used with
two options (-a and -g).

 With the —a option, it displays the current
terminal option settings.

* With the —g option, it displays selected
settings in a format that can be used as an
argument to another set terminal command.

5. bc command

e The bc command is one of the most
interesting commands in UNIX.

e |t turns UNIX into a calculator.
e Syntax :- echo “134+18” |bc

6. Calendar (cal) command

e The calendar command, cal, displays the
calendar for a specified month or for a year.

* |t is an example of a command that has no
options but uses arguments.

* |ts general format is
cal option [[month] year]

A8 sst@JavaTpolnt; »

ssstt@lavarpoint:-§ cal
June 2016
S0 Mo Tu He Th Fr 53
123
y 6 7§ 91011
1213141516 17 18
BRUND UL
Rl EE

sssit@avaTpoint:-S |

Department of Information technology

AOE sssit@JlavaTpoint: ~

sssit@lavaTpoint:~S cal july 1991
July 1991

Su Mo Tu We Th Fr Sa
1 2 3 4 5 6

7 8 916 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31

sssit@lavaTpoint:~S$ cal july 2028
July 2028

Su Mo Tu We Th Fr Sa

2 3

9 10

16 17 1
23 24 2
30 31

sssit@lavaTpoint:-~$ I

4
11
8
5

Department of Information technology

7. man command

* One of the most important UNIX commands is
man.

 The man command displays online
documentation. When you can’t remember
exactly what the options are for a command,
you can quickly check the online manual and
look up the answer.

;S & sssit@JlavaTpoink: ~

LS(1) User Commands

NAME
1ls - list directory contents

SYNOPSIS
ls [OPTION]... [FILE]...

DESCRIPTION
List information about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvsUX nor --sort 1is speci-
fied.

Mandatory arguments to long options are mandatory for short options
too.

-a, --all
do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..

--author
Manual page 1s(1) 1line 1 (press h for help

Department of Information technology

* The man command with an option of =k and it
will display information, including commandes,
about the topic.

S man —k sort

* |f you want to know what UNIX sort utilities
are available, you can enter the command and
get a list of sort utilities.

8. lpr command

 The most common print utility is line printer
(lpr).

* The line printer utility prints the contents of
the specified files to either the default printer
or to a specified printer.

* Multiple files can be printed with the same
command.

Example:-

* Slprfilel

* The command prints one file to the standard
printer.

* S lprfilel file2 file3

* The command prints three files to the
standard printer.

* To direct the output to a specified printer, we
use the —P option. The name of the printer

immediately follows the option with no
spaces.

* S lpr—Plp0 filel file2 file3

e The command prints three files to printer [pO.

9. Change Password (passwd)

* The password command, passwd, is used to
change your password.

* |t has no options or attributes but rather does

its work through a dialog of questions and
answers.

* S passwd

AAA jtp@JavaTpoint: ~

jtp@JavaTpoint:~S$ passwd

Changing password for jtp.
(current) UNIX password:

Enter new UNIX passwora:

Retype new UNIX password:

You must choose a longer password
Enter new UNIX passwora:

Retype new UNIX password:
Password unchanged

Enter new UNIX passwora:

Retype new UNIX password:

You must choose a longer password
passwd: Authentication token manipulation error
passwd: password unchanged
jtp@JavaTpoint:~$ l

Department of Information technology

10. Clear Screen (clear)

* The clear command clears the screen and puts
the cursor at the top.

* |tis available in most systems.

Syntax:-
* Sclear

11. System Name (uname)

 Each UNIX system stores data, such as its
name about itself. To see these data, we use
the uname command.

Syntax: -
e Suname

We can display all of the data using the all
option (-a)

Syntax:
Suname -a

Output:
goelashwin36@Ash: ~

File Edit View Search Terminal Help
goelashwin36@Ash:~S uname -3

Linux Ash 4.15.0-29-generic #31-Ubuntu SMP Tue Jul 17 15:39:52 UTC 2018 x86 64 X
86 64 x86 64 GNU/Linux
goelashwin36@Ash:~S I

Department of Information technology 172

We can specify only the name (-n).
Syntax:

Suname -n

Output:

goelashwin36@Ash: ~

File Eqit View Search Terminal Help
goelashwin36@Ash:~S uname -n

Ash
goelashwin36@Ash:~S I

Department of Information technology 173

e -s option: It prints the kernel name.
Syntax:

e Suname -s
* Output:

goelashwin36@Ash: ~

File Edit View Search Terminal Help
goelashwin36@Ash:~S uname -S

L1nUX
goelashwin36@Ash:~S I

Department of Information technology 174

* -r option: It prints the kernel release date.
Syntax:

Suname —r
Output:

goelashwin36@Ash: ~

File Eqit View Search Terminal Help
goelashwin36@Ash:~S uname -1

4,15.0-29-generic
goelashwin36@Ash:~S I

Department of Information technology 175

* Options can be combines, for example, to
display the operating system and its release,
use —sr

12. echo

 echo command is used to display line of
text/string that are passed as an argument .

* Secho Welcome to UNIX

raghvendra@raghvendra-Inspiron-15-3567: ~

File Edit View Search Terminal Help
raghvendra@raghvendra-Inspiron-15-3567:~$ echo "Geeks for Geeks"

Geeks for Geeks
raghvendra@raghvendra-Inspiron-15-3567:~5 I

Department of Information technology 177

13. Script command

The script command can be used to record an
Interactive session.

When you want to start recording, key the
command.

To stop the recording, key exit.

You may have to use ctrl + d to log out after
the exit command.

Example:-
* Sscript myfilename

* To append to the file rather than erase it, we
use the append option (-a)

Example:-
* Sscript —a filename

|
idelab63@idelab63:~$ script welcome
Script started, file is welcome

'To run a command as ‘administrator (user "root™), use "sudo <command>".
See "man sudo_root" for details.

idelab63@idelab63:~$ Is

Desktop Downloads Music Public typescript welcome
Documents examples.desktop Pictures Templates Videos

idelab63@idelab63:~$ cal
February 2016
Su Mo Tu We Th Fr Sa

1 23456
7 8 910111213
14151617 18 19 20

21.22.23 24 25 26 27
28 29

ldelab63@idelab63:~$ echo "1097+543" | be
1640

idelab63@idelab63:~$ exit
exit
Script done, file is welcome

Department of Information technology 180

bR
x ? wal i

Scrpt arted on Thursday. Februaryzo‘ls 10 0014PMIST
‘Tomnacoﬁlmandasac mgl atlr(I

tor {user .root")
éSee man sudo toot" for detaﬂs |

"), se "sudo <:command-;,1"‘§j%

1delab63@1delab63 ~$ ls O N -
Deskiop Downloads Mus1c Pubhc typescnpt welcome
Documents examples. desktop Plctures Templates Videos
idelab63@idelab63:~$ calH 1 W

February 2016 A A

SuMoTuWe ThFrSy AR AR

1123456 ‘ \ e
178910111213 Hlaii
4151617181920 Y L
1222324252677

By

I IR |] "G ‘
O 'ulf
- I Il 3 I} l || '“ l"' "l ll'[,l” IJJ‘ .ll'l' s
o L |||l||l|l|! MHIII.’!‘..‘H.“' .Ili'.|x|||‘1” ’.uln i |"| “ll’ *I ||WL_||W||.|'"|' li W:‘;.. i i I
08 LRI |I|"'.np!'”y'll"“'“' ll T lIH {l IP Yi" Ii IH A lu ‘ | |“"" || |||' ’llll II ! " ||' i
! ' ll"B" I‘I II |“"" ! || ‘); ” ‘|| ||||| ‘m ‘\l l' '| i “r "Il
"'||' ldE\l yllﬁ .@l a . || “I" I 'l” ll||'| |‘||| |‘ I [l ||1| a| HN'”UH'”"HI l M" Il "'ll'll" l"‘ M ‘I‘A""‘:
i "l'”' I ulunn uu | L M I ‘l (I | ‘ I [‘ l‘ il i f ‘|‘|"|" I ittt
".l' 4 l'“l.\|..“ il tlu . i "‘ | "n"""‘l"ll'”"l "' "||‘||| n‘| ul \' i 1‘ O || | 'l" 1| ‘ ' ‘II .'“ \l'l||| ” "'M‘ l’l |]"; ‘) L e
'-, "”" """" '“”"" bt) il T L RUINEN LA A H i il '” '|| e L.
" | "”' WL (AN 1|‘ l" .I. [|‘|| ||‘ [{1 [14 1) ‘ | \ l H ‘l "|M| |,|'\‘|| (I
l‘| “n |‘ll|“‘||llllilll.ll'n"u'll'll'h'H'| [f ” Il | i "“ l' '|‘ Il 'I" l" ['l"‘xl'”'ll"" ||‘ 'J‘\l \ 1‘ ‘\‘ " ‘ ‘” 'll 'th’ |”||'| | W”I‘ |'|illll | ‘ ‘ulll '\' "l'
‘ "“I Hu' "l'll I "N' Iyl gy | L8 AR L l IR (1 ' ‘ >| | ' |’| “” i
'V AY t»""m' \" Ll I '\w‘ '»1'
|ld labﬁa ‘ ldEIab63 gl $ ex1| 'lllh || iy ||‘ '||4”n 'lllll'lli'll l| I i 1 |!'|MN' “Il ’l"'l‘ ||||\| “||||||”||y||l"|' |. “ll"l'l”(.,I'u',‘.!' ' i
\ e T e
""‘m 'Ml"w'u | “'»"" ARG A I !‘ ‘I i e |
¥ A “" 'l' ||||'||\“|I'|l|u |\| || LY |'|||| | .i | “ (| I Ll n‘l‘ r‘|" J." ,,||l |‘|N:|‘ '“ A N il
sl s
'e L “|| lllulnl" ’ | il 'ul‘l lil "Iub ""'I‘l'll'“ M f 1 A ‘ | ‘| ' | IH| |l||" 'IH || ‘I||| ‘I"l,””:"l” “ t“u“““‘} Vit
"”"” Il ll‘”Yl'l"”"'iI‘“"" M"'I\‘ i il l'| T l' [| ”'\“ | | | | \ "' \ | ‘I H ‘ ‘| |‘.‘ u" ""“” M»I' \ "'1“|. ' |
il ‘:“I“|"|'|H|I'|“|"‘ | T | " l || lw | ‘1‘|~ ‘I I | [W HM ! “lh
I '| I { |'||I"“|'||h‘|l"'|l' Wi | ;, | ‘ " \‘ " I ‘ ’ I ' ‘ \H ll ‘
N UM ' il I ikt l \
iullnnl'“"' ”“"l " l‘ 1 F b 20 6 1@ . 5| M”IS ‘||.IH
| e I'
s ler [V} !ln TllllrSday 1 {l" |!'|l'l\ il “ {1 Yfe y I .‘ | ”' ‘ l M'l “ '| “M 1:” i
||'] llh |l| || | 0. il H (I | T ||| I l'“ 'l ln\lllll‘ ”1” I | I ‘ ' “ | | | I “ 1 l “) “' | I|‘ Il ’ ‘ \.“l
||||"“ |'|‘ '1 lh | [||| \ ‘ \ ‘ ‘
,I“,|’| '! ";Il 'l|'|'||||" \"u' ”P':‘H' l | | '. ‘ | “ I\ ‘ Il |‘| | || ‘| ‘ ‘ '! \, \ Ly R l‘ H ‘ ‘
“yl |,‘ ‘|'||‘|l, lllg',‘\ ‘ ! I)' 4I\‘|I
Y "I'IH‘II{\"IMI“ |'|‘|'|‘u“\’ ‘ |||“ LN I |
U "Hu..,l'u L 1 A

FILE HANDLING SYSTEM CALLS
USING STANDARD 1/0

* File is a collection of numbers, symbols and
text placed onto the disk.

e Thus, files allow us to store information
permanently on to the disk and then access

then when needed.

File types:-
* There are two types of files.
e Sequential file
 Random access file.

[F|debdb i bl L BLLLE R LAE S AL W LLLLALL/ L% LAL o ELLLl%lill il J.I.L-'LI.I.I.__! -

5 No | Function Operation
1 fopen() Creates a new file for read/write operation.
2 fclose() Closes a file associated with file pointer.
3 closeall() | Closes all files opened with fopen().
4 foetc() Reads the character from current pointer position and advances the pointer to the
next character.
3 fprintf() Writes all tvpes of data values to the file.
i fscanf() Reads all tvpes of data values from a file.
7 fputc() Writes characters one by one to a file.
8 putwi() Writes an integer to the file.
9 getw() Reads an integer from the file.
10 | fread() Reads structured data written bv fwrite().
11 | fwrite() Writes block of structured data to the file.
12 | fseek() Sets the pointer position anvwhere in the file.
13 | feof() Detects the end of file.
14 | ferror() Reports error occurred while read/write operations.
15 | perror() Prints compilers error messages along with user defined messages.
16 | ftell() Retums the current pointer position.
17 | rewind{) | Sets the record pointer at the beginning of the file.
18 | unlink() Removes the specified file from the disk.
19 | rename() | Changes the name of the file.

Opening of file: -
Syntax:-

FILE *fp;
fp=fopen(“data.txt”,

7 n H)

It is necessary to write FILE in the uppercase.
The function fopen() will open a file “data.txt”
in read mode.

Reading a file:-

Once the file is opened using fopen(), its
contents are loaded into the memory(partly or
wholly).

The pointer points to the very first character
of the file.

The fgetc() is used to read the contents of the
file.

* The syntax for fgetc() is
ch=fgetc(fp);

* where fgetc() reads the character from current
pointer position and advances the pointer
position so that the next character is pointed.

Text Modes:-

r ---> opens text file for reading only.

w ---> opens a text file for writing only.

a ---> opens text file for appending only.

r+ ---> opens text file for reading and writing.
w+ ---> opens text file for reading and writing.
a+ ---> opens a text file for read or write

* w(write):- This mode opens a new file on the
disk for writing. If the file already exists, it will
be overwritten without confirmation.

Syntax:-
fp=fopen(“data.txt”,"w”);

 Here, data.txt is the file name and “w” is the
mode.

r(read):-This mode searches a file and if it is
found the same is loaded into the memory for
reading from the first character of the file.

The file pointer points to the first character and
reading operation begins.

If the file doesn’t exist, then compiler returns
NULL to the file pointer.

Using pointer with if statement we can prompt
the user regarding failure of operation.

* Syntax:-

”n»

fp=fopen(“data.txt”,’r”);

if(fp==NULL)
{

printf(“File does not exist”);
}

(OR)
if(fp=(fopen(“data.txt”,”r”))==NULL)
{

printf(“File does not exist”);

}

* Here, data.txt is opened for reading only. If the
file does not exist the fopen() returns NULL to
file pointer ‘fp’.

append(a):-This mode opens a pre existing file
for appending data.

The data appending process starts at the end
of the opened file.

The file pointer points to the last character of
the file.

If the file doesn’t exist, then new file is
opened i.e., if the file does not exist then the

o 7 (o ’)

mode of “a” is same as “w”.

* Due to some or other reasons if file is not
opened in such a case NULL is returned.

* File opening may be impossible due to
insufficient space on to the disk and some
other reasons.

* Syntax:-

fp=fopen(“data.txt”,”a”);

* Here, if data.txt file already exists, it will be

opened. Otherwise a new file will be opened
with the same name.

w+(write+read):- This mode starts for file
search operation on the disk.

In case the file is found, its contents are
destroyed.

If the file is not found, a new file is created.

It returns NULL if it fails to open the file. In
this file mode new contents can be written
and there after reading operation can be
done.

Syntax:-

fp=fopen(“data.txt”,”w+");

Here, data.txt file is open for reading and
writing operation.

* a+(append+read):- In this file operation mode
the contents of the file can be read and
records can be added at the end of file.

e A new file is created in case the concerned file
does not exist.

e Due to some or the other reasons if a file is
unable to open then NULL is returned.

* Syntax:-
. fp=fopen(“data.txt””a+");

* Here, data.txt is opened and records are
added at the end of file without affecting the
previous contents.

* r+ (read + write):- This mode is used for both
reading and writing.

 We can read and write the record in the file. If
the file does not exist, the compiler returns
NULL to the file pointer.

* Syntax:-
fp=fopen(“data.txt”,’r+”);
if(fo==NULL)

printf(“\n File not found”);

* Here, data.txt is opened for the read and write
operation.

* |f fopen() fails to open the file it returns NULL.

* The if statements check the value of file
pointer fp; and if it contains NULL a message is
printed and program terminates.

* Closing a file:-

* The file that is opened from the fopen()
should be closed after the work is completed
i.e., we need to close the file after reading and
writing operations are completed.

* Syntax:-
fclose(file pointer);

e To close one or more files at a time the
function fcloseall() is used.

* Syntax:-
fcloseall();

FILE 1/O:-

After opening the file, the next thing needed
is the way to read or write the file. These
functions are classified as:-

Character I/O functions.
String 1/0 functions.
Formatted I/O functions.
Block I/O functions.

Character I/O functions:-

* ‘C’ provides a set of functions for reading and
writing character by character or one byte at a
time.

* These functions are defined in the standard
library.
1. fgetc()
2. fputc()

o fgetc():- fgetc() is used to read a character
from a file.

* Syntax:-

fgetc(FILE *stream);

e fputc():- This function is used to write a single
character into a file. If an error occurs it
returns EOF.

* Syntax:-
* fputc(ch, FILE *stream);

 String 1/O functions:-

* |f we want to read a whole line in the file then
each time we will need to call character input
function.

— fgets()
— fputs()

* fgets():- This function reads string from a file
pointed by file pointer. It also copies the string
to a memory location referred by an array.

* Syntax:-
fgets(str, size, FILE *stream);

Here, str is a name of a character array,
size is an integer value.

e fputs():- This function is useful when we want
to write a string into the opened file.

* Syntax:-
* fputs(str,FILE *stream);

 Formatted I/O functions:-

* |f the file contains data in the form of digits,
real numbers, character and strings, then
character I/O functions are not enough as the
values would be read in the form of

characters.
— fprintf()
— fscanf()

* These functions are used for formatted input
and output. These are identical to scanf() and
printf().

e fprintf():- This function is used for writing

characters, strings, integers, floats etc to the
file.

e Hence this function is called the formatted
function.

* |t contains one more parameter that is file
pointer, which points the opened file.

Syntax:-
fprintf(fp, “control string”, arguments list);

Here, the parameter fp associated with a file
that has been opened for writing.

A control string specifies the format specifiers.

Argument list contains variables separated by
commas.

* fscanf():- This function reads character,

strings, integer, floats etc from the file pointed
by file pointer.

 This is also a formatted function.

Syntax:-
fscanf(fp, “control string”, arguments list);

Here, the parameter fp associated with a file
that has been opened for writing.

A control string specifies the format specifiers.

Argument list contains variables separated by
commas.

Block 1/O functions:- (Structure Read and
Write)

Block I/O functions read/write a block. A block
can be a record, a set of records or an array or
a structure.

These functions are also defined in standard
library.

— fread()

— fwrite()

These two functions allow reading and writing
of block of data.

* fread():- This function is used for reading an
entire block from a given file.

* Syntax:-

* fread(&structure_variable, int size, int
num,FILE *fp);

Here, structure_variable is the pointer or
address of block of memory (structure).

size is the size of the structure.

num is the number of structure variables.

fp is the pointer to the datatype FILE.

e fwrite():- This function is used for writing an
entire structure block to a given file.

* Syntax:-

e fwrite(&structure_variable, int size, int
num,FILE *fp);

Here, structure_ variable is the pointer
address of block of memory(structure).

size is the size of the structure.

num is the number of structure variables.

fp is the pointer to the datatype FILE.

or

Random access functions:-

Sequential access files allow reading the data
from the file in sequential manner which
means that data can only be read in sequence.

Random access files allow reading data from
any location in the file. The functions are

fseek()

ftell()
rewind()

fseek():-

fseek() is used to move the file position to a
desired location within the file.

Syntax:-

fseek(file_ptr,offset,position);

where

file_ptris a pointer to the file.

offset is a number or variable of type long

position is an integer number.

* The offset specifies the number of positions to
be moved from the location specified by

position. The position can take one of the
following three values

Values Meaning
0 Begmning of file

| Current position
2 End of file.

ftell():-

ftell() takes a file pointer and returns a
number of type long, that corresponds to the
current position. This function is useful in
saving the current position of a file, which can
be used later in the program.

Syntax:-
n=ftell(fp);

where n would given the relative offset of the
current position.

rewind():-

rewind takes a file pointer and resets the
position to the start of the file.

Syntax:-
rewind(fp);

* fflush()

 The Clibrary function

int fflush(FILE *stream) flushes the output
buffer of a stream.

* Declaration: -

Following is the declaration for fflush()
function.

int fflush(FILE *stream)

* Parameters: -

stream - This is the pointer to a FILE object
that specifies a buffered stream.

e Return Value: -

* This function returns a zero value on success.
If an error occurs, EOF is returned and the
error indicator is set (i.e. feof).

Example: A Simple getchar()

int getchar (void) {
static char c:;
if (read(0, &c, 1l) ==
return o;
else return EOQOF;

}

* Read one character from stdin

o File descriptor 0 is stdin
o &c points to the buffer
= 1 is the number of bytes to read

« Read returns the number of bytes read
= In this case, 1 byte means success

Making getchar() More Efficient g

» Poor performance reading one byte at a time
« Read system call is accessing the device (e.g., a disk)
» Reading one byte from disk is very time consuming
o Better to read and write in /arger chunks

Starting new process

* When you start a process (run a command),
there are two ways you can run it -

Foreground Processes
Background Processes

Foreground Processes

* By default, every process that you start runs in
the foreground.

* |t gets its input from the keyboard and sends
its output to the screen.

* You can see this happen with the Is command.
If you wish to list all the files in your current
directory, you can use the following command

Sls ch*.doc

* This would display all the files, the names of
which start with ch and end with .doc -

ch01-1.doc
ch010.doc
ch02.doc
ch03-2.doc
ch04-1.doc
ch040.doc

e The process runs in the foreground, the
output is directed to my screen, and if the lIs
command wants any input (which it does not),
it waits for it from the keyboard.

* While a program is running in the foreground
and is time-consuming, no other commands
can be run (start any other processes) because
the prompt would not be available until the
program finishes processing and comes out.

Background Processes

A background process runs without being
connected to your keyboard.

If the background process requires any
keyboard input, it waits.

The advantage of running a process in the
background is that you can run other
commands; you do not have to wait until it
completes to start another!

* The simplest way to start a background
process is to add an ampersand (&) at the end
of the command.

e Slsch*.doc &

* This displays all those files the names of which
start with ch and end with .doc -

n01-1.doc
n010.doc
n02.doc
n03-2.doc
n04-1.doc
n040.doc

Here, if the Is command wants any input
(which it does not), it goes into a stop state
until we move it into the foreground and give
it the data from the keyboard.

O O O O O O

That first line contains information about the

background process - the job number and the
process ID.

You need to know the job number to

manipulate it between the background and
the foreground.

[1] + Done Is ch*.doc &
S

* The first line tells you that the Is command
background process finishes successfully. The
second is a prompt for another command.

* Listing Running Processes

* |t is easy to see your own processes by
running the ps (process status) command as
follows -

PID TTY TIME CMD
18358 ttyp3 00:00:00 sh
18361 ttyp3 00:01:31 abiword
18789 ttyp3 00:00:00 ps

* One of the most commonly used flags for ps is
the -f (f for full) option, which provides more

information

Sps

D D
amrood 6738
amrood 6739
amood 3662
amrood 659)

PPl
366.
366.
36017
366.

i'_':lt'_':i'_ﬁm

SIIME

10:23:03
10:22:54
08:10:3
10:31:50

Iy Tl

ts/6
ts/6
ts/6

ts/6

(MD
first one

second one
"
05 -1

= No Column & Description

1 UID
User ID that this process belongs to (the person running it)

2 PID»
Process IT)

3 PPIT)
Parent process ID (the ID of the process that started it)

4 C
CPU utilization of process

5 STIME
Process start time

& TITY
Terminal type associated with the process

r TIME
CPU time taken by the process

8 CMD

* There are other options which can be used
along with ps command

3.No. Option & Description

1 -a
Shows information about all users

b2

X
Shows information about processes without terminals

3 -
Shows additional information like -f option

4 -2
Displays extended information

Stopping Processes

* Ending a process can be done in several
different ways.

e Often, from a console-based command,
sending a CTRL + C keystroke will exit the
command.

* This works when the process is running in the
foreground mode.

* |f a process is running in the background, you
should get its Job ID using the ps command.
After that, you can use the kill command to
kill the process as follows.

e Sps -f

AT i a——i S a——

A e s e e

ey S fefe fe e fe gt
-“-'-Hfrnllr-nfrnulr-nfrnulr-nfr-llr-

Ly s s ey s

o Skill 6738
Terminated

e Here, the kil command terminates
the first_one process.

* |f a process ignores a regular kill command,
you can use kill -9 followed by the process ID
as follows -

e Skill -9 6738Terminated

Zombie and Orphan Processes

* Normally, when a child process is killed, the
parent process is updated via a SIGCHLD
signal.

* Then the parent can do some other task or
restart a new child as needed.

* However, sometimes the parent process is
killed before its child is killed.

* In this case, the "parent of all processes,"”
the init process, becomes the new PPID

(parent process ID).

* In some cases, these processes are called
orphan processes.

When a process is killed, a ps listing may still
show the process with a Z state.

This is a zombie process. The process is dead
and not being used.

These processes are different from the orphan
processes.

They have completed execution but still find
an entry in the process table.

* Daemon Processes

* Daemons are system-related background
processes that often run with the permissions
of root and services requests from other
processes.

* A daemon is a process that runs in the
background, usually waiting for something to
happen that it is capable of working with.

The top Command: -

top is a basic Unix command which is very
useful for observing the current state of your
Unix system, by default presenting you the list
of top users of your system's resources — CPU
shares and memory.

* Here is the simple syntax to run top command
and to see the statistics of CPU utilization by
different processes -

* Stop

ubuntu$ top

top - 13:29:@9 up 2 days, 7:13, 4 users, load average:
0.07, 0.02, 0.00

Tasks: 148 total, 1 running, 147 sleeping, @ stopped,
0 zombie

Cpu(s): 0.6kus, 0.5%sy, 0.0kn1, 97.3%1d, 1.6%wa,
0.0%hi, 0.0%si, 0.0%st

Mem: 4851792k total, 4026104k used, 25688k free,
359168k buffers

Swap: 4096492k total, 24296k used, 4072196k free,
2806484k cached

Job ID Versus Process ID

 Background and suspended processes are
usually manipulated via job number (job ID).

* This number is different from the process ID
and is used because it is shorter.

* [n addition, a job can consist of multiple
processes running in a series or at the same
time, in parallel.

* Using the job ID is easier than tracking
individual processes.

Types of Processes

Parent and Child process

Zombie and Orphan process

Daemon process

Process Control

Process Identifiers

* Every process has a unique process ID, a non-
negative integer.

* As processes terminate, their IDs can be
reused.

* There are some special processes, but the
details differ from implementation to
implementation:

* Process ID 0: scheduler process (often known
as the swapper), which is part of the kernel
and is known as a system process

* Process ID 1: init process, invoked by the
kernel at the end of the bootstrap procedure.

mmelude <unistd. h=

pid t getpid(void):

/* Returns: process ID of calling process */

pid t getppid(void);

/* Returns: parent process ID of calling process */

mid t getuad(void):
/* Returns: real user ID of calling process */

md t getewad(wvoid);
/* Retumns: effective user ID of calling process */

gid t getgid(void):
/* Returns: real group ID of calling process */

gid t getelid(void):
/* Returns: effective group 1D of calling process */

INTER PROCESS COMMUNICATION
(IPC)

* Inter Process Communication (IPC) refers to a
mechanism, where the operating systems
allow various processes to communicate with

each other.

* This involves synchronizing their actions and
managing shared data.

* Inter Process Communication (IPC) is a
mechanism that involves communication of
one process with another process.

* This usually occurs only in one system.
 Communication can be of two types.

1. Between related processes initiating from
only one process, such as parent and child

Processes.

2. Between unrelated processes, or two or
more different processes.

* Following are some important terms that we
need to know before proceeding further on
this topic.

* Pipes: - Communication between two related
processes. The mechanism is half duplex
meaning the first process communicates with
the second process. To achieve a full duplex
i.e., for the second process to communicate
with the first process another pipe is required.

 FIFO: - Communication between two unrelated
orocesses. FIFO is a full duplex, meaning the first
orocess can communicate with the second
orocess and vice versa at the same time.

* Message Queues: - Communication between two
or more processes with full duplex capacity. The
processes will communicate with each other by
posting a message and retrieving it out of the
gueue. Once retrieved, the message is no longer
available in the queue.

 Shared Memory: - Communication between two
or more processes is achieved through a shared
piece of memory among all processes. The
shared memory needs to be protected from each
other by synchronizing access to all the
processes.

 Signals: - Signal is a mechanism to
communication between multiple processes by
way of signalling. This means a source process
will send a signal (recognized by number) and the
destination process will handle it accordingly.

PIPES: -

Pipe is a communication medium between
two or more related or interrelated processes.

It can be either within one process or a
communication between the child and the
parent processes.

Communication can also be multi-level such as
communication between the parent, the child
and the grand-child, etc.

* Communication is achieved by one process
writing into the pipe and other reading from
the pipe.

* To achieve the pipe system call, create two
files, one to write into the file and another to
read from the file.

Ak

Write Pipe within one process Read

* Syntax: -
#tinclude<unistd.h>
int pipe(int pipedes[2]);

* This system call would create a pipe for one-
way communication i.e., It creates two
descriptors, first one is connected to read
from the pipe and other one is connected to
write into the pipe.

* Descriptor pipedes[0] is for reading and
pipedes[1] is for writing.

 Whatever is written into pipedes[1] can be
read from pipedes[O0].

 This call would return zero on success and -1
in case of failure.

e #include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>

int open(const char *pathname, int flags);

int open(const char *pathname, int flags,
mode_t mode);

* The arguments passed to open system call are
pathname (relative or absolute path),

* flags mentioning the purpose of opening file
(say,
opening for read, O _RDONLY,
to write, O_ WRONLY,
to read and write, O_RDWR,
to append to the existing file O _APPEND,

to create file, if not exists with O_CREAT and
SO on)

* The required mode providing permissions of
read/write/execute for user or

owner/group/others. Mode can be mentioned
with symbols.

e Read — 4, Write — 2 and Execute — 1.

#include<unistd.h>
int close(int fd)

* The above system call closing already opened
file descriptor.

* This system call returns zero on success and -1
in case of error.

#include<unistd.h>

ssize _t read(int fd, void *buf, size t count)

* The above system call is to read from the
specified file with arguments of file descriptor
fd, proper buffer with allocated memory

(either static or dynamic) and the size of
buffer.

#include<unistd.h>

ssize t write(int fd, void *buf, size t count)

* The above system call is to write to the
specified file with arguments of the file
descriptor fd, a proper buffer with allocated

memory (either static or dynamic) and the size
of buffer.

* Two-way Communication Using Pipes

* Pipe communication is viewed as only one-
way communication i.e., either the parent
process writes or the child process reads or
vice-versa but not both.

* However, what if both the parent and the
child need to write and read from the pipes
simultaneously, the solution is a two-way
communication using pipes.

Two pipes are required to establish two-way
communication.

Following are the steps to achieve two-way
communication -

Step 1 - Create two pipes. First one is for the
parent to write and child to read, say as pipel.
Second one is for the child to write and parent
to read, say as pipe2.

Step 2 - Create a child process.

Step 3 - Close unwanted ends as only one end
is needed for each communication.

Step 4 - Close unwanted ends in the parent
process, read end of pipel and write end of
pipe2.

Step 5 - Close the unwanted ends in the child
process, write end of pipel and read end of
pipe2.

Step 6 - Perform the communication as
required.

Parent
Process

Child
Process

FIFOs: -

Pipes were meant for communication
between related processes.

Can we use pipes for unrelated process
communication, say, we want to execute client
program from one terminal and the server
program from another terminal? The answer
IS No.

Then how can we achieve unrelated processes
communication, the simple answer is Named
Pipes.

* Even though this works for related processes,
it gives no meaning to use the named pipes
for related process communication.

 We used one pipe for one-way communication
and two pipes for bi-directional
communication. Does the same condition
apply for Named Pipes.

* The answer is no, we can use single named
pipe that can be wused for two-way
communication (communication between the
server and the client, plus the client and the
server at the same time) as Named Pipe
supports bi-directional communication.

* Another name for named pipe is FIFO (First-
In-First-Out). Let us see the system call
(mknod()) to create a named pipe, which is a
kind of a special file.

#tinclude <sys/types.h>
#tinclude <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int mknod(const char *pathname, mode_t mode, dev_t dev);

* The pathname along with the attributes of
mode and device information. The pathname
is relative, if the directory is not specified it
would be created in the current directory.

* The mode specified is the mode of file which
specifies the file type such as the type of file
and the file mode as mentioned in the
following tables.

SNO | FILETYPE DESCRIPTION
1 | SIFBLK Block special
2 | SIFCHR Character special
3 | S_IFIFO FIFO special
4 | SIFREG Regular file
> | S.IFDIR Directory
6 | SIFLNK Symbolic Link

* The dev field is to specify device information

such as major and minor device numbers.

S.NO FILE MODE DESCRIPTION
1 S IRWXU Read, write, execute /search by owner
2 S IRUSR Read permission, owner
3 S IWUSR Write permission, owner
4 | S_IXUSR Execute/search permission, owner
5 | S_IRWXG Read, write, execute /search by group
6 S_IRGEP Read permission, group
7 S_IWGRP Write permission, group
8 S_IXGRP Execute/search permission, group
5 S IRWXO Read, write, execute /search by others
10 | S IROTH Read permission, others
11 S IWOTH Write permission, others

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode t mode)

* This library function creates a FIFO special file,
which is used for named pipe.

* The arguments to this function are file name
and mode.

 The file name can be either absolute path or
relative path.

e |f full path name (or absolute path) is not
given, the file would be created in the current
folder of the executing process.

e The file mode information is as described in
mknod() system call.

Introduction to Unix File System

Unix is an open Operating System.

All data in Unix is organized into files. All files
are organized into directories.

These directories are organized into a tree like
structure called the FILE SYSTEM.

Files in Unix system are organized into multi
level hierarchy structure known as a directory
tree.

/{roof)

///\\

bin lib home
{den:&s] (system files) yramﬂ//\ (libraries) (uae?a:Qa&)
P sh Kk bin ib include fred helen
(programs) (libraries) ({headers) (er) (user)

Vi stdio.h hello.c

Department of Information technology 293

UNIX Features

Portable.

Multi users.

Multi tasking.
Networking.

Device Independences.
Organized File System.
Utilities.

Services.

UNIX System Architecture

Application

Department of Information technology 295

 Hardware:- The hardware includes all the
parts of a computer including clocks, timers,
devices, parts etc. in the UNIX OS architecture.

* The Kernel:- The kernel is the heart of the
Unix system. The kernel is a part of the
operating system. It interacts directly with the
hardware of the computer through a device
that is built into the kernel.

The main functions of the kernel are Memory
Management, Controlling access to the
computer, Maintaining the file system,
Handling interrupts, Handling errors,
Performing input and output services, Allocate
the resources of the computer among users.

The Shell:- Shell is the utility that processes
your requests. when you type in a command
at the terminal, shell interprets the command
and calls the program that you want.

* There are various commands like cp, mv, cat,
grep, id, wc, nroff, a.out and more.

* Application Layer:- It is the outermost layer
that executes the given external applications.

VI EDITOR

The VI editor is a screen editor available on
most UNIX systems.

When you invoke the vi editor, it copies the
contents of a file to a memory space known as
a buffer.

Once the data have been loaded into the
ouffer, the editor presents a screen full of the
ouffer to the user for editing.

f the file does not exist, an empty buffer is
created.

Only one screen \

can be seen at
a time.

Buffer

options

file list

A anad

Department of Information technology

300

* There are following way you can start using vi
editor -

Command Description

vi filename Creates a new file if it already does not exist, otherwise
opens existing file.

vi -R filename Opens an existing file in read only mode.

view filename Opens an existing file in read only mode

MODES

* The vi editor uses two basic modes:
the command mode and the text mode.
Command Mode:-

* When the vi editor is in the command mode, any
key that is pressed by the user is considered a
command.

e Commands are used to move the cursor, to
delete or change part of the text, or to perform
many other operations.

Text Mode:-

* When the vi editor is in the text mode, any key
that is pressed by the user is considered text.

* The keyboard acts as a typewriter.

* In the text mode, the characters typed by the
user, if they are printable characters, are
inserted into the text at the cursor.

 This means that to add text in a document, we
should first place the cursor at the desired
location. To place the cursor, however, we
must be in the command mode.

* The typical operations, therefore, is to place
the cursor with a command, switch to the text
mode and edit the text, then switch back to
the command mode for the next operation.

< S

$ vi file_name

Command Mode

Other Commands

Stop >

FIGURE 2.2 Vi Modes

Department of Information technology

Changing Modes

e |tis clear that we must switch back and forth
between vi command and text modes.

* To tell vi to do something, it must be in the
command mode, to edit text, it must be in the

text mode.

* To invoke vi, you type the following command
at the UNIX prompt:

S vi filename

* When you invoke vi, you are always in the

commano
move bac
mode anc

mode. During the session, you can
< and forth between the command

the text mode.

* To exit vi, you must be in command mode.

e There are

six commands that take you to the

text mode (a, A, i, |, o and O). Use any of these
commands, vi switches immediately to the
text mode.

* When you are in the text mode, you press the
Escape key (esc) to go to the command mode.

* When you enter vi, you are in the command
mode. To exit vi, you must be in the command
mode.

COMMANDS

ADD TEXT Commands.

* To insert text, you need to be in the text
mode. The vi editor contains several
commands to change the mode to text.

Command

1. ADD TEXT COMMANDS

Description

Inserts text before current location.

Inserts text at the beginning of the current line.

Appends text after current character.

Appends text at the end of the current line.

Opens an empty text line for new text after the current line.

Opens an empty text line for new text before the current line.

Insert Commands (i and |)

!) w/”nh;r‘_hl',)

Department of Information technology

Append Commands (a and A)

Command
After

Appe

Department of Information technology 312

New Line Commands (o or O)

Before Before o
J :
his lmo ‘
The cl)ksor is in ¢t 2
The c'oo: is in this line. " S 4
Command | o'’ goes here.<csc’ Sommnd

Department of Information technology 313

2. CURSOR MOVE COMMANDS

To edit text, we need to move the cursor to
the text to be edited.

The cursor move commands are effective only
in the command mode.

After the execution of a move command, the
vi editor is still in the command mode.

There are many cursor move commands,

FABLE 2.9 Cursor Move Commands

e A T . B O N S e £y BRPOTT. ——

Commmd

fom ——— e, -

e

Function

Hnnmnml Movcu
h, ¢, Backspace

I, =, Spacebar

Maoves the cursor one character to the left.

Moves the cursor one character to the right,

0 Moves the cursor to the beginning of the current line.
% Moves the cursor to the end of the current line.
W"/:l:t.i-(-:‘z;lml;lovcs

k1 Moves the cursor one line up.

il Moves the cursor one linc down.

- Moves the cursor o the beginning of the previous line.
+, Rctum Moves the cursor to the beginning of the next line.

" T

Department of Information technology

315

3. DELETION COMMANDS

Command Function
X Deletes the current character.

dd Deletes the current line.

4. JOIN COMMAND

* Two lines can be combined using join
command (J). The command can be used
anywhere in the first line.

 After the two lines have been joined, the
cursor will be at the end of the first line.

5. SCROLLING COMMANDS

Command Function
ctrl+y |Scrolls up one line.
ctrl+e |Scrolls down one line.
ctrl +u | Scrolls up half a screen (12 lines)
ctrl +d |[Scrolls down half a screen (12 lines)
ctrl+ b |Scrolls up whole screen (24 lines)
ctrl +f |Scrolls down whole screen (24 lines)

e Line Scroll Commands (ctrl + y and ctrl + e).

* Half Screen Commands (ctrl + u and ctrl + d).

* Full Page Commands (ctrl + b and ctrl + f).

6. UNDO COMMANDS

Command Function
u Undoes only the last edit

U Undoes all changes on the current line.

7. SAVING AND EXIT COMMANDS

Command Function
‘W Saves the contents of the buffer without quitting vi.

‘W filename Writes contents of buffer to new file and continues.

ZZ Saves the contents of the buffer and exits.
‘w(q Saves the contents of the buffer and exits.
:q Exits the vi (if buffer changed will not exit).

:q! Exits the vi without saving.

DIRECTORY HANDLING SYSTEM
CALLS

* The basic handling system calls provided by
unix operating system are

1. opendir()
2. readdir()
3. rewinddir()
4. closedir()

O 00 N O U

mkdir()
rmdir()
umask()
seekdir()
telldir()

 opendir(): - opendir() function opens the
director passed to it.

* Syntax: -
#include <sys/types.h>
#tinclude <dirent.h>

DIR *opendir(const char *name);
DIR *fdopendir(int fd);

* Description: -

* The opendir() function opens a directory
stream corresponding to the directory name,
and returns a pointer to the directory stream.

* The stream is positioned at the first entry in
the directory.

 The fdopendir() function is like opendir(), but
returns a directory stream for the directory
referred to by the open file descriptor fd.

 After a successful call to fdopendir(), fd is
used internally by the implementation, and
should not otherwise be wused by the
application.

* Return Value: - The opendir() and fdopendir()
functions return a pointer to the directory
stream.

* On error, NULL is returned, and errno is set
appropriately.

http://man7.org/linux/man-pages/man3/errno.3.html

* readdir(): - The readdir() function takes
pointer to a DIR structured returned by
opendir() to read the directory.

* Syntax: -
#finclude <linux/types.h>
#tinclude <linux/dirent.h>

int readdir(unsigned int fd, struct dirent
*dirp, unsigned int count);

Description: -
readdir() reads one dirent structure from the directory pointed at by fd into the

memoty area pointed Dby dirp. The parameter count is ignored; at most one dirent
structure 15 read. The dirent structure 15 declared as follows:

sctdien

{
long d_1no; /* node number */
off td off [* offset to this dirent */

unsigned short d reclen; /* length of this d_name */
chard_name [NAME MAX+1]; /*filename (null-terminated) */

}

d o s an inode number. d offis the distance from the start of the directory to
this dirent. d_reclen 1s the size of d_name, not counting the null terminator. d_name 1
a null-terminated filename.

* Return Value: -

* On success, 1 is returned. On end of directory,
O is returned. On error, -1 is returned,
and errno is set appropriately.

 rewinddir(): - The rewinddir() function
rewinds , that is, reposition the pointer at the
first entry in the directory.

* Syntax: -
#finclude <sys/types.h>
#include <dirent.h>
void rewinddir(DIR *dirp);

e Description: - The rewinddir() function resets
the position of the directory stream dirp to
the beginning of the directory.

* Return Value: -
The rewinddir() function returns no value.

e closedir(): - The closedir() function closes the
directory passed to it.

* Syntax: -
#include <sys/types.h>
#include <dirent.h>
int closedir(DIR *dirp);

https://linux.die.net/include/sys/types.h
https://linux.die.net/include/dirent.h

* Description: -

* The closedir() function closes the directory
stream associated with dirp. A successful call
to closedir() also closes the underlying file
descriptor associated with dirp. The directory
stream descriptor dirp is not available after
this call.

* Return Value: - The closedir() function returns
O on success. On error, -1 is returned,
and errno is set appropriately.

 mkdir(): - mkdir() function is used to create
directories. It creates a new, empty directory.

* Syntax: -
#finclude <sys/stat.h>
#finclude <sys/types.h>

int mkdir(const char *pathname, mode t
mode);

* Description: -
* mkdir() attempts to create a directory
named pathname.

 The parameter mode specifies the permissions
to use. It is modified by the process’s umask in
the usual way: the permissions of the created
directory are (mode & ~umask & 0777). Other
mode bits of the created directory depend on
the operating system.

* Return Value: - mkdir() returns zero on
success, or -1 if an error occurred (in which
case, errno is set appropriately).

* rmdir(): - rmdir() function is useful to delete
the directories.

* Syntax: -
#include <unistd.h>
int rmdir(const char *pathname);

* Description: - rmdir() deletes a directory,
which must be empty.

e Return Value: - On success, zero is returned.
On error, -1 is returned, and errno is set
appropriately.

* umask(): - The umask() function sets the new
umask value of the calling process and returns
the old umask value. This function never
return an error.

* Syntax: -
#include<sys/types.h>
#inlcude<sys/stat.h>
mode_t umask(mode_t new_umask);

* The new_umask argument is specified as the
bitwise ‘OR’ of any of the file access

permission constants such as S IRUSR,
S _IWUSR, S_IXUSR etc;

» seekdir(): - set position of directory stream

* Syntax: -
H#include <sys/types.h>
#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

http://pubs.opengroup.org/onlinepubs/7908799/xsh/systypes.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/dirent.h.html

* Description: -

* The seekdir() function sets the position of the
next readdir() operation on the directory
stream specified by dirp to the position
specified by loc. The value of loc should have
been returned from an earlier call to telldir().
The new position reverts to the one
associated with the directory stream
when telldir() was performed.

http://pubs.opengroup.org/onlinepubs/7908799/xsh/readdir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/telldir.html

* If the value of loc was not obtained from an
earlier «call to telldir() or if a call
to rewinddir() occurred between the call
to telldir() and the call to seekdir(), the results
of subsequent calls toreaddir() are
unspecified.

* Return Value: -
The seekdir() function returns no value.

http://pubs.opengroup.org/onlinepubs/7908799/xsh/telldir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/rewinddir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/telldir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/readdir.html

e telldir(): - current location of a named
directory stream

* Syntax: -
#tinclude <dirent.h>
long int telldir(DIR *dirp);

http://pubs.opengroup.org/onlinepubs/7908799/xsh/dirent.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/dirent.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/dirent.h.html

* Description: -

* The telldir() function obtains the current location
associated with the directory stream specified
by dirp. If the most recent operation on the
directory stream was a seekdir(), the directory
position returned from the telldir() is the same as
that supplied as a loc argument for seekdir().

e Return Value: -

Upon successful completion, telldir() returns the
current location of the specified directory stream

http://pubs.opengroup.org/onlinepubs/7908799/xsh/seekdir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/seekdir.html

fork Function

* An existing process can create a new one by
calling the fork function.

#imnclude <umistd.h>
pid_t fork(void):

[* Returns: 0 mn chuld, process ID of child mn parent, —1 on error */

* The new process created by fork is called
the child process.

 This function is called once but returns twice.

 The only difference in the returns is that the
return value in the child is 0, whereas the

return value in the parent is the process ID of
the new child.

e The two main reasons for fork to fail

 If too many processes are already in the

system, which usually means that something
else is wrong.

* |f the total number of processes for this real
user ID exceeds the system’s limit.

vfork Function

« Both fork() and vfork() are the system
calls that creates a new process that is
identical to the process that invoked fork() or

vfork().

e Using fork()allows the execution of parent and
child process simultaneously. The other
way, vfork() suspends the execution of parent
process until child process completes its
execution.

* The primary difference between the fork() and
vfork() system call is that the child process
created using fork has separate address space
as that of the parent process.

* On the other hand, child process created using
vfork has to share the address space of its
parent process.

BASIS FOR
COMPARISON

Basic

Execution

Modification

Copy-on-write

FORK()

Child process and parent
process has separate address

spaces.

Parent and child process

execute simultaneously.

If the child process alters any
page in the address space, it
is invisible to the parent

process as the address space

are separate.

fork() uses copy-on-write as
an alternative where the
parent and child shares same
pages until any one of them

modifies the shared page.

VFORK()

Child process and parent
process shares the same

address space.

Parent process remains
suspended till child process

completes its execution.

If child process alters any
page in the address space,
it is visible to the parent
process as they share the

same address space.

viork({) does not use copy-

on-write.

exit Functions

e exit, Exit - terminate the current process

#Fincluade <unistd. h=

void _exit(int srarus):

#inclhade <=stdlib,. h=

void Exit(int srafus);

 The function _exit() terminates the calling
process "immediately".

 Any open file descriptors belonging to the
process are closed; any children of the
process are inherited by process 1, init, and
the process’s parent IS sent
a SIGCHLDsignal.

wait function

* When a process terminates, either normally or
abnormally, the kernel notifies the parent by
sending the SIGCHLD signal to the parent.

* Because the termination of a child is an
asynchronous event (it can happen at any
time while the parent is running).

* This signal is the asynchronous notification
from the kernel to the parent.

* The parent can choose to ignore this signal, or
it can provide a function that is called when
the signal occurs: a signal handler. The default
action for this signal is to be ignored.

* A process that calls wait or waitpid can:

1. Block, if all of its children are still running

2. Return immediately with the termination
status of a child, if a child has terminated and
IS waiting for its termination status to be

fetched.

3. Return immediately with an error, if it
doesn’t have any child processes

#include <svs waith

pid twaitmt *statloc]:
i twidi tid it s, ot opons

* Both refun: process ID1f OK, 0 (see later), or -1 on emor *

e The differences between these two functions
are:

 The wait function can block the caller until a
child process terminates, whereas waitpid has
an option that prevents it from blocking.

* The waitpid function doesn’t wait for the child
that terminates first; it has a number of
options that control which process it waits for.

wait3 and wait4 Functions

Most UNIX system implementations provide
two additional functions: wait3 and wait4,
with an additional argument rusage that
allows the kernel to return a summary of the
resources used by the terminated process and
all its child processes.

#nclude <systypes b
#include <sysiwaith
#nclude <sysfime b
#nclude <sysTesource b

pid_t wait3(int *statloc, Int opfions, struct rusage *rusage):
pid_twait4(pid_tpid. int *statloc, inf opfions, struct rusage *rusage):

* Both retum: process [D1f OK, 0, or -1 on emor *

exec Functions

* One use of the fork function is to create a new
process (the child) that then causes another
program to be executed by calling one of
the exec functions.

* When a process calls one of
the exec functions, that process is completely
replaced by the new program which starts
executing at its main function.

* The process ID does not change across
an exec, because a new process is not created.

* exec merely replaces the current process (its
text, data, heap, and stack segments) with a
brand-new program from disk.

* There are seven different exec functions:

#include <unistd b

Int execl(const char *pathname, const char *arg0, ... /* (char *)0 */);
Int execv(const char *pathname, char *const argv]]);
Int execle(const char *pathname, const char *arg0, ..
/¥ (char *)0, char *const envp|[] */);
Int execve(const char *pathname, char *const argv|]. char *const envp[])
Int execlp(const char *filename, const char *argl, ... /* (char *)0 */);

Int execvp(const char *filename, char *const argv]]);
nt fexecve(int £d, char *const argv[], char *const envp[]):

/* All seven retum: —1 on error, no retwm on success *

* The first four take a pathname argument, the
next two take a filename argument, and the
last one takes a file descriptor argument.

Differences among the seven exec functions

Function

execl
execlp
execle
EXECY
EAEEVD
EXELVE
fexecve

(letter in name)

§

Are list areyll

X

environ

o

envoll

system Function

* |tis convenient to execute a command string
from within a program.

#Finclude <stdlib h=

int system(const char *cmdstring):

UNIX System process control primitives:
fork creates new processes

exec functions initiates new programs

exit handles termination

wait functions handle waiting for termination

Process control commands in Unix are:

bg - put suspended process into background
fg - bring process into foreground

jobs - list processes

* Jobs Command : Jobs command is used to list
the jobs that you are running in the
background and in the foreground.

* |f the prompt is returned with no information
no jobs are present.

* Syntax:
jobs [JOB]

Options

-l Lists process IDs in addition to the normal
information.

-n List only processes that have changed
status since the last notification.

-p Lists process IDs only.
-r Restrict output to running jobs.
-s Restrict output to stopped jobs.

A S

DIRECTORY RELATED UTILITES

pwd
S
mkdir
cd

rmndir

1. pwd

* The command used to determine the current
directory is print working directory (pwd).

* |t has no options and no attributes.

Example:-
* Spwd

A0 ssst@JavaTaint;

SSUQaVaTpOTNE = pid

[none/sssit

sssttflavampoint-
Desktd

Documents exan

J
top Down
n
sssttflavampotnt~

2. ls

 The list command lists the contents in a
directory. Depending on the options used, it
can list files, directories or subdirectories.

Syntax:-
 Sls [options] [path]

Example:-

e Sls

s command options

1. Is —a:- List all files including hidden files.

OO G sssit@JavaTpoint: ~

sssit@lavaTpoint:~5 1ls -a

.dmrc .gtk-bookmarks .pulse-cookie
. Documents .gvfs Templates
.abcd. txt Downloads .ICEauthority .thumbnails
.bash_history examples.desktop . local Untitled Folder
.bash_logout .filel .mission-control Videos
.bashrc .fontconfig .mozilla .Xauthority
.cache .gconf Music .Xsession-errors
.compiz-1 .gnome2 Pictures .Xsession-errors.old
.config .goutputstream-BYB7GY .profile
.dbus .goutputstream-RVYNHY Public
Desktop .gstreamer-0.10 pulse
sssit@lavaTpoint:~§ I

Department of Information technology

2. Is —A:- List all files including hidden files
except for “” and “. .

3. Is —R:- List all files recursively, descending
down the directory tree from the given path.

4. |s —I:- List the files in long format. i.e., with an
index number, owner name, group name, size
and permissions.

(% sssit@JavaTpoint: ~

sssit@lavaTpoint:=% 1s -1
total 52
2 sssit sssit :28 Desktop
4 sssit sssit 20 Disk1
5551t sssit :27 Documents
sss5it sssit :55 Downloads
sssit sssit :23 examples.desktop
sssit sssit :27 Music

sssit sssit 27 Public
sssit sssit :27 Templates
sssit sssit 47 Untitled Folder
2 sss5it sssit 27 Videos
sssit@lavanuint*~5 i

.
3
|
2
2 ss55it sssit 21 Pictures
2
2
2

Department of Information technology

5. Is —o:- List the files in long format but without
the group name.

6. Is —g:- List the files in long format but without
the owner name.

7. Is —i:- List the files along with their index
number.

8. |s —s :- List the files along with their size.

9. Is =S:- Sort the list by size, with the largest at
the top.

10. Is —r:- Reverse the sorting order.

11. |s -1:- there will be situations in which you
want the filenames printed as a column rather
than several files in one line

3. mkdir

* To create a new directory, you use the make
directory (mkdir) command.

* |t has two options : permission mode and
parent directories.

Syntax:-
 mkdir [options ...] [directories. . .]

Example:-
 Smkdir dharani

MO & sssit@JavaTpoint: ~

sssit@lavaTpoint:~5 pwd

/home [sssit

sssit@lavaTpoint:~$ mkdir created
sssit@lavaTpoint:~§
sssit@lavaTpoint:~§ 1s

created Documents Music Public Untitled Folder

Desktop Downloads new sreated Videos
Disk1 examples.desktop Pictures Templates
sssit@lavaTpoint:~$

sssit@lavaTpoint:~5 pwd

/home [sssit

sssit@lavaTpoint:~$ mkdir created

mkdir: cannot create directory ‘created': File exists
sssit@lavaTpoint:~§ I .

Department of Information technology

To make multiple directories

Syntax:
* mkdir <dirnamel> <dirname2> <dirname3> ...

|.-.l Y

sssit@JavaTpoint: ~/created

sssit@lavaTpoint:~/createds mkdir filel file2 file3
sssit@JavaTpoint:~/created$
sssit@JavaTpoint:~/createas s

filel filez file3
sssit@lavaTpoint:~/createdS I

Department of Information technology 383

4. cd

* The cd stands for ‘change directory’ and this
command is used to change the current

directory i.e., the directory in which the user is
currently working.

Syntax:-

* Scd <dirname>
Example:-

* Scd dharani

090 kTt st
JOINE:~§ pue

oint«§ cd honessstt Desktop
nint«Desko

5. rmdir

* When a directory is no longer needed, it
should be removed. The remove directory
(rmdir) command deletes directories.

* But will not be able to delete a directory
including a sub-directory. It means, a directory
has to be empty to be deleted.

Syntax:
e Srmdir <dirname>

Example:
e Srmdir created

5.ls
Is [options] [names]
* If no names are given, list the files in the current directory.

* With one or more names, list files contained in a directory name or that
match a file name.

* The options let you display a variety of information in different formats.
Options

-a :List all files, including the normally hidden . files.

-b :Show nonprinting characters in octal.

-c :List files by inode modification time.

-C :List files in columns (the default format, when displaying to a terminal
device).

-d :List only the directory's information, not its contents. (Most useful with -l and
-i.)

-f :Interpret each name as a directory (files are ignored).

-g :Like -l, but omit owner name (show group).

-i :List the inode for each file.

-| :Long format listing (includes permissions, owner, size, modification time, etc.).

-L :List the file or directory referenced by a symbolic link rather than the link
itself.

-m :Merge the list into a comma-separated series of names.

-n :Like -1, but use user ID and group ID numbers instead of
owner and group names.

-0 :Like -l, but omit group name (show owner).

-p :Mark directories by appending / to them.

-g :Show nonprinting characters as ?.

-r :List files in reverse order (by name or by time).

-R :Recursively list subdirectories as well as current directory.
-s :Print sizes of the files in blocks.

-t :List files according to modification time (newest first).
-u :List files according to the file access time.

-X :List files in rows going across the screen.

-1 :Print one entry per line of output.

Examples

List all files in the current directory and their sizes; use
multiple columns and mark special files:

|s -asCF

N

File Handling Utilities

Create file (cat)
Edit file (sed)
Display file (more)
Print file (lpr)

1. CREATE FILE (cat)

e The most common tool to create a text file is a
text editor such as vi.

 Other utilities, such as cat, that are useful to
create small file.

e The cat command is the most universal and
powerful tool.

* |t can be used to display the content of a file,
copy content from one file to another,
concatenate the contents of multiple files,
display the line number, display S at the end
of the line, etc

To display file content:-

* The cat command can be used to display the
content of a file.

Syntax:- Scat <filename>

Example:- Scat jtp.txt

MO E sssit@JavaTpoint: ~/Desktop

sssit@lavaTpoint:~$ cd Desktop/
sssit@lavaTpoint:~/Desktops
sssit@lavaTpoint:~/Desktops cat jtp.txt
this is javatpoint

you are learning linux here

thankyou

thankyou

thankyou

a

— Ao IO h QN O

=
=
= |
= |
= - |

sssit@lavaTpoint:~/Desktops I

1. To create a file:-

The cat command can be used to create a new file with
greater than sign (>).

Syntax:- cat > [filename]
Example:- S cat > hai

.-. i

sssit@JavaTpoint: ~/Desktop

sssit@JavaTpoint:~/Desktop$ cat >javatpoint
welcome to javatpoint

let's learn linux

have a great day anhead.
sssit@JavaTpoint:~/Desktop$

sssit@lavaTpoint:~/Desktop$ cat javatpoint
welcome to javatpoint
let's learn linux

have a great day anhead.
sssit@lavaTpoint:~/Desktop$ I

Department of Information technology 394

2. To Append the content of a file:-

The cat command with double greater than sign

(>>) append something in your already existing
file.

Syntax:- Scat >> (filename)
Example:- Scat >> hai

.ﬁ. i i

sssit@JavaTpoint: ~/Desktop

sssit@lavaTpoint:~/Desktop$ cat >>javatpoint

a new line will be addea at the end of the file.
sssit@lavaTpoint:~/Desktop$
sssit@lavaTpoint:~/Desktop$ cat javatpoint

welcome to javatpoint

let's learn linux

have a great day ahead.

a new line will be addea at the end of the file.
sssit@JavaTpoint:~/Desktops |}

Department of Information technology 395

3. To copy file:-

The cat command can be used to copy the
content of a file into another file.

Syntax:- cat (old file name) > (new file name)
Example:- Scat combo>combo?

o N

sssit@JavaTpoint: ~/Desktop

sssit@lavaTpoint:~/Desktop$ cat combo
hello

everyone

at javatpoint
sssit@lavaTpoint:~/Desktop$

sssit@lavaTpoint:~/Desktop$ cat combo>combo2
sssit@JavaTpoint:~/Desktop$
sssit@lavaTpoint:~/Desktop$ cat combo2

hello

everyone
at javatpoint
sssit@lavaTpoint:~/Desktop$ I

Department of Information technology 396

4. To concatenate file:-

The cat command can be used to concatenate
the contents of multiple files in a single new file.

Syntax:- cat <filel> <file2>......> <new file>
Example:- Scat filel file2 file3 > combo

F<1—10

sssit@JavaTpoint: ~fDesktop

sssit@lavaTpoint:~/Desktops cat file1l
hello

sssit@lavaTpoint:~/Desktops
sssit@lavaTpoint:~/Desktops file2
everyone

sssit@lavaTpoint:~/Desktops
sssit@lavaTpoint:~/Desktops file3
at javatpoint

sssit@lavaTpoint:~/Desktops

sssit@lavaTpoint:~/Desktops filel file2z file3 =combo
sssit@lavaTpoint:~/Desktops

sssit@lavaTpoint:~/Desktops combo

hello

everyone
at javatpoint
SSSit@Javanﬂint:~fDESktDp$I]

Department of Information technology 397

5. To Insert a new file:-

A new line will be inserted while

concatenating multiple files by wusing a
hyphen (-).

syntax:

cat -

<filenamel> <filename2>. ... > <new filena
me>

Example:

cat - filel file2 file3 >combo

AAE sssit@JavaTpoint; ~Desktop

sssit@lavaTpoint:~/Desktop$ cat - filel file2 filed >conbo
this 15 a combo of all the three files,
sssit@lavaTpoint:~/Desktops

sssit@lavaTpoint:~/esktop$ cat combo

this 15 a combo of all the three files.
nello

veryone

at javatpotnt

sssit@davaTpoint:~ Desktops |

Department of Information technology

6. cat —n command:-

The 'cat -n' option displays line numbers in front
of each line in a file.

Syntax: cat-n <fileName>
Example: cat -n jtp.txt

;e & sssit@JavaTpoint: ~/Desktop

sssit@lavaTpoint:~/DesktopS$ cat -n jtp.txt
this is javatpoint
you are Llearning linux here
thankyou
thankyou
thankyou

R ATO 0 On oW

mmmmm
nnnnn

sssit@lavaTpoint:~/Desktops l

7. cat —b:-
The 'cat -b' option removes the empty lines.
Syntax: cat -b (file name)
Example: cat -b jtp.txt

™ & sssit@JavaTpoint: ~f/Desktop

sssit@lavaTpoint:~/Desktops cat -b jtp.txt
this is javatpoint

yvou are learning linux here
thankyou

thankyou

thankyou

AR TI0 0 an oo

mmmmm
nnnnn

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

sssit@lavaTpoint:~/Desktops l

8. cat —e command:-

The 'cat-e' option displays a 'S' sign at the end
of every line.

Syntax: cat -e <fileName>
Example: cat -e program

F Y Y-

sssit@JavaTpoint: ~/Desktop
sssit@lavaTpoint:~/Desktop$ cat -e program
this 1s linux$

you are learning linux §

sssit@JavaTpoint:~/Desktops [}

9. cat command (as an end marker): -

 The 'cat << EOF ' option displays an end
marker at the end of a file.

e |tis called here directive and file content will
be saved at the given end marker.

* The file can be saved with the help of 'ctrl + d
' keys also. It works like the end marker.

Syntax: cat << EOF
Example: cat > exm.txt << EOF

A0 ssit@lavaTpoint; »

sssit@lavaTpotnt:~§ cat > exm.txt <<EOF
> hello

> IN1s 15 Javatpoint

> welcome all

> EOF

sssit@lavaTpoint:~§ cat exm.txt

nello

this 1s javatpoint

welcome all

sssit@lavaTpoint:~S I

2. EDIT FILE (sed)

* UNIX provides several utilities to edit text files.

The most common is a basic text editor such
as Vi.

* |In addition, there are others that, such as sed,
that provide powerful search and edit tools.

e All of the basic edit utilities can create a file,
but only some can edit one.

Syntax:
command | sed 's/<oldWord>/<newWord>/"

Example:
echo class7 | sed 's/class/jtp/"'

echo class7 | sed 's/7/10/"
cat msg.txt | sed 's/learn/study/"

A sssit@JavaTpoint; ~

sssit@lavaTpoint:~§ echo class? | sed 's/class/jtp/’
jtp7

sssit@lavaTpoint:~$ echo class7 | sed 's/7/10/'
class10

sssit@lavaTpotnt:~S

sssit@lavaTpoint:~S cat msq.txt

learn linux, learn fast

Linux 1s very easy to learn,

sssit@lavaTpoint:~§ cat msg.txt | sed 's/learn/study/'
study linux, learn fast

Linux is very easy to study.

sssit@JavaTpoint:~§ I

(x idelab63®@idelabs3; ~

this is a book

hat

how r u

ldelab63@idelab63:~$ cat welcome
this is a book

hai k

idelab63@idelab63:~$ cat welcome | sed ‘s /book/study/'

how r u

tdelab63@idelab63:~$ cat > Untk
welcome to unix lab
hello

idelab63@idelab63:~$ 1s

Desktop Documents Downloads examples.desktop Music Pictures Public
.odt Templates typescript unix Videos welcome
tdelab63g@idelabs3:~$ cat unix

welcome to unix lab

hello

ldelab63gidelab63:~$ cat unix | sed 's/lab/class/!
:elcome to unix class : &
ello

idelab63gidelabs3:~$ |

script

Global Replacement

To edit every word we have to use
a global replacement 'g'. It will edit all the
specified word in a file or string.

Syntax:

command | sed 's/<oldWord>/<newWord>/
Example:

echo class7 class9 | sed 's/class/jtp/g'

cat msg.txt | sed 's/learn/study/g'

OA& sssit@JavaTpoint: ~

sssit@lavaTpoint:~$ echo class7 class9 | sed 's/class/jtp/’
jtp7 class9

sssit@lavaTpoint:~$ echo class7 class9 | sed 's/class/jtp/q’
jtp7 jtp9

sssit@lavaTpoint:~$

sssit@lavaTpoint:~§ cat msg.txt | sed 's/learn/study/’
study Linux, learn fast

linux is very easy to study.

sssit@lavaTpoint:~§

sssit@lavaTpoint:~$ cat msg.txt | sed 's/learn/study/q’
study Linux, study fast

linux is very easy to study.

sssit@lavaTpoint:~§ |

Removing a Line:-

The 'd' option will let you to remove a
complete line from a file.

You only need to specify a word from that line
with 'd' option and that line will be deleted.

But please note that all the lines having that
same word will be deleted.

Syntax:

cat <fileName> | sed '/<Word>/d'
Example:

cat msg.txt | sed '/jtp/d'

OO0 sssit@lavaTpolnt; ~

sssit@lavaTpotnt:~S cat msg. txt
this 1 jtp

welcone to Jtp

learn Linux

Linux 15 very easy

1t's interesting

sssit@lavaTpoint:~5 cat msg.txt | sed '[jtp/d’
learn Linux

Linux 15 very easy

1t's interesting

sssit@lavaTpotnt:-

3. DISPLAY FILE (more)

* As 'cat' command displays the file content.
Same way 'more' command also displays the
content of a file.

* Only difference is that, in case of larger files,
'cat’' command output will scroll off your
screen while 'more' command displays output
one screen ful at a time.

Syntax: more <file name>

Example: more /var/log/udev

MBS sssit@JavaTpoint: ~

sssit@lavaTpoint:~% more /var/log/udev

monitor will print the received events for:

UDEV - the event which udev sends out after rule processing
KERNEL - the kernel uevent

KERNEL[8.308288] add /devices /LNXSYSTM:00 (acpi)
ACTION=add

DEVPATH=/devices /LNXSYSTM: 00

MODALIAS=acpi:LNXSYSTM:

SEQNUM=1373

SUBSYSTEM=acpi

UDEV _LOG=3

KERNEL[8.308302] add /devices /LNXSYSTM:00/LNXCPU:00 (acpi)
ACTION=add

DEVPATH=/devices /LNXSYSTM:00/LNXCPU: 00

DRIVER=processor

MODALIAS=acpi:LNXCPU:

--More--(0%)

Options
Option Jewnaton

-C Clears screen before displaying
-d Displays error messages
-f Does not screen wrap long lines.

-| lgnores form feed characters.

-r Displays control characters in format ~C

-S Squeezes multiple blank lines (leaving only one blank line in output)
-u Suppresses text underlining

-W Waits at end of output for user to enter any key to continue

-lines Sets the number of lines in a screen (default is screen size -2)
+nmbr Starts output at the indicated line number (nmbr)

+/ptrn Locates first occurrence of pattern (ptrn) and starts output two lines

before it.

If there is more than one screen of data, more
displays one screen, less two lines.

At the bottom of the screen, it displays the
message “- - -more- - - (dd%)”.

This message indicates that there are ore lines
in the file and how much has been displayed
so far.

To display the next screen, key the space bar.

4. Print file

 The most common print utility is line printer
(Ipr).

Operations Common to Both

* The operations that are common to both
directories and regular files are

1. copy (cp)

2. move (mv)
3. rename (mv)
4. link (In)

5. delete (rm)
6. find (find)

1. Copy (cp) command

* The copy (cp) utility creates a duplicate of a
file, a set of files, or a directory.

e If the source is a file, the new file contains an
exact copy of the data in the source file.

 |f the source is a directory, all of the files in
the directory are copied to the destination,
which must be a directory.

 If the destination file already exists, its
contents are replaced by the source file
contents.

* The cp command copies both text and binary
files.

Syntax:-
* cp <existing file name> <new file name>

cp command Option

* The copy command has three options:
preserve attributes (-p)
interactive (-i)
recursion (-r)

* Preserve Attributes Option:-

When the destination file exists, its

permissions, owner and group are used rather
than the source file attributes.

 We can force the permissions, owner and
group to be changed, however by using the
preserve (-p) option.

Example:-
* Scp—p filel file2

* Interactive Option:-

We can guard against a file being accidentally
deleted by a copy command by using the
interactive (-i) option.

When the interactive option is specified, copy
asks if we want to delete an existing file.

If we reply y or yes, the file is replaced. If we
reply n or no, the copy is cancelled.

Example:-
Scp —i filel file2

Recursive copy:-

Another way we can copy a collection of files
is with the recursive (-r) copy.

* The recursive copy copies the whole directory
and all of its subdirectories to a new directory.

Example:-
* Scp —r DirA DirB

> 18 | o118
Dird

- 1s DirB

Cannot access DirB: No such file or mmcwry

S QP -X D&:lfgé?
u 'k #is 4 mfﬂib hg

B el
L]

«,.MQL i {h .
biﬁ ‘1
; {%&jl ‘| < .'r"'&"“ I;[,:‘}"l|

i1 ‘.-\y','
i_" ‘ i.) :

" '.
..l 4“ r]rlA

2. MOVE (mv) Command

* The move (mv) command is used to move
either an individual file, a list of files, or a
directory.

e After a move, the old file name is gone and
the new file name is found at the destination.

 This is the difference between a move and a
copy.

After a copy, the file is physically duplicated, it
exists in two places.

Syntax:-
mv <source file> <destination file>

The first argument is the name of the file to be
moved.

The second argument is its destination or, in
the case of a rename, its new name.

mv Options

* Move has only two options:
Interactive (-i)
Force (-f).

* Interactive:- if the destination file already
exists, its contents are destroyed unless we
use the interactive flag (-i) to request that
move warn us.

e Syntax:- Smv —i filel mvDir

T 1=
b . tTxt C . T d . txt geak . TxT

P cat geek.txt

India

$ cat b.txt

geckstorgeaks

$ mv -i geek.txt b.txt

mw: Oowverwrite "b.txt®™?2 w

® 1=
b . txi . txt d .ttt

$ cat b.txt

India

* Force:- When we are not allowed to write a
file, we are asked if we want to destroy the file
or not.

* If we are sure that we want to write it, even if
it already exists, we can skip the interactive
message with the force (-f) option.

e Syntax:- Smv —f filel mvDir

$ 1s
b.txt Cc . txt d . txt geek . txT

2 cat b.txt

geeksforgeeks

2 1s -1 b.txt
-r--r--r--+ 1 User User 13 Jan 9 13:37 b.txt

T mv geesk.txt b.txt

mv: replace "b.txt', overriding mode 84444 (r--r--r--32

2 1=
b.txt C.txt d.txt gk Txt

S mv -Ff geek.txt b.txt

2 1=
b.txt C.txt d.txt

2 cat b.txt
India

3. Rename (mv) Command

e UNIX does not have a specific rename
command.

* Recall that the move (mv) command with a
new name (second argument) renames the

file.

4. Link (In) command

e The In command is used to create links
between files.

* A link in UNIX is a pointer to a file. Like
pointers in any programming languages, links
in UNIX are pointers pointing to a file or a
directory

* Creating links is a kind of shortcuts to access a
file. Links allow more than one file name to
refer to the same file, elsewhere.

* There are two types of links :
Soft Link or Symbolic links
Hard Links

* These links behave differently when the
source of the link (what is being linked to) is
moved or removed.

* Symbolic links are not updated (they merely

contain a string which is the pathname of its
target).

 Hard links always refer to the source, even if
moved or removed.

* For example, if we have a file a.txt. If we
create a hard link to the file and then delete
the file, we can still access the file using hard

link.

* But if we create a soft link of the file and then
delete the file, we can’t access the file through
soft link and soft link becomes dangling.

* Basically hard link increases reference count of
a location while soft links work as a shortcut
(like in Windows)

Syntax:-
* |n [options] source destination

Example:-
* SIn filel file2

In Options

* Link has three options:
Symbolic.
Interactive.
Force.

 Symbolic:- The default link type is hard. To
create a symbolic link, the symbolic option (-s)
Is used.

Example:-
e SIn —s file2 1nDir

* Interactive :- If the destination file already
exists, its contents are destroyed unless we
request to be warned by using the interactive

flag (-i).

* When the interactive flag is on link asks if we
want to destroy the existing file.

Example:-
* SIn =i file2 1nDir

* Force:- When we are about to overwrite a file,
we are asked if we want to destroy the file or
not.

* If we are sure that we want to write it, even if
it already exists, we can skip the interactive
message with the force (-f) option.

Example:-
e SIn —f file2 1nDir

skl
el SN al
: 4

A 4

5. Remove (rm) Command

e rm stands for remove.

* rm command is used to remove objects such
as files, directories, symbolic links and so on
from the file system like UNIX.

* rm removes references to objects from the file
system, where those objects might have had
multiple references.

* By default, it does not remove directories.

* This command normally works silently and
vou should be very careful while
running rm command because once you
delete the files then you are not able to
recover the contents of files and directories.

Syntax:

* rm [OPTION]... FILE...

S
a.txt b.txt C.txt d.txt e.txt

Femoving one +ile at a time

S rm a.txt

% 1s
b.txt C.txt d. txt e.txt

Femowving more than one file at a time

S rm b.txt c.txt

S
d.txt e tTxt

rm Options

1. -i (Interactive Deletion):-

Like in cp, the -i option makes the command
ask the wuser for confirmation before
removing each file, you have to press y for
confirm deletion, any other key leaves the file
un-deleted.

* Example:-
* Srm -i d.txt

$ rm -1 d.txt

rm: remove regular empty file "d.txt’? y

% 1s
e, txt

2. -f (Force Deletion):-

rm prompts for confirmation removal if a file
IS write protected.

The -f option overrides this minor protection
and removes the file forcefully.

Example:-
Srm —f e.txt

$ 1s -1
total ©
-r--r--r--+ 1 User User @ Jan 2 22:56 e.txt

5 rm e.txt

rm: remove write-protected regular empty tile "e.txt

% 1s
e.txt

S rm -f e.txt

% 1s

. -r (Recursive Deletion):-

With -r(or -R) option rm command performs
a tree-walk and will delete all the files and
sub-directories recursively of the parent
directory.

At each stage it deletes everything it finds.

Normally, rm wouldn’t delete the directories
but when used with this option, it will delete.

S 1=
B

S 1=s B
a.txt b . txit

% 1s C
C ..t t o I -

S rm *

rm: cannot remove 'B': Is a directory

rm: cannot remove C': Is a directory

S rm -p *

$ 1s

6. find Command

e The find command in UNIX is a command line
utility for walking a file hierarchy.

* |t can be used to find files and directories and
perform subsequent operations on them.

* |t supports searching by file, folder, name,
creation date, modification date, owner and
permissions.

Syntax:-
* find [paths] [expression]

* |ts first argument is the path that we want to
search, usually from our home directory.

* The second argument is the criterion that find
needs to complete its search.

Example:-
 Sfind DirC —name file3 —print

* Find and print the absolute pathname of a file.

* Assume that we are doing our monthly file
backup and want to know all files that were
changed in the last 30 days.

* We can use the find command to list all files
whose modification date (mtime) is within the
last 30 days.

Example:-

 Sfind DirC —type f —mtime -30

Complete List of find Criteria

Security and File Permission

* The security system in UNIX, like any other

operating system, is designed to control the
access to resources.

User and Groups:-

* [n UNIX, everyone who logs on to the system
is called a user. Users are known to the system
by their user ids.

* |[n UNIX, not every user is created equal.

* Some users have more capabilities than
others. These users are known as super users.
Also known as system administrators.

e Super Users need to have a lot of experience
and a lot of training.

Superuser

Users

Groups:-

e Users can be organized into groups. A team
working on a project, for example, needs to
share many of the same file.

* Users can belong to multiple groups.

groups Command

e Unix provides a command, groups, to
determine a user’s group.

* You can check your group or any other user’s
group.

* |f you enter the command with no user id, the
system responds with your group.

* |f a user belongs to multiple user groups, all of
them will be listed.

Syntax:- groups [options] userid

Example:- Sgroups

Security Levels

* There are three levels of security in UNIX:
System.

Directory.
File.

* The system security is controlled by the
system administrator, a super user.

* The directory and file securities are controlled
by the users who own them.

SysAdmin

System Security

e System security controls who is allowed to
access the system. It begins with your login id
and password.

* When the system administrator opens an
account for you, he or she creates an entry in
the system password file.

 The contents of an entry in our password file.

—

ﬁ

BT T |] [e

0rouzan | 8hp 3650 4] B AForug | taorouzr M
—— S

h———L—_—h‘——_

\ \
SRNIAY I TH | |
AN .[l '\\l 1\]\\}t\l.\)\

* Home directory:- the login or home directory
when you first log into the system. It is
represented as the absolute pathname for
your home directory.

* Login Shell:- identifies the shell that is loaded
when you login.

Permission Codes

* Both the directory and file security levels use a
set of permission codes to determine who can
access and manipulate a directory or file.

* The permission codes are divided into three
sets of codes.

* The first set contains the permissions of the
owner of the directory or file.

* The second set contains the group
permissions for members in a group as
identified by the group id.

* The third set contains the permissions for
everyone else that is, the general public.

 The code for each set is a triplet representing
read (r), write (w) and execute (x).

|
i Read Write Exec Read Write Exec Read Write FExec
rw o x r WX r WX
User Group - Others

FGURE 4.5 Directory and File Permissions

TABLE 4,1 Summary of Permission Rule

k

- A .-

Permission | read {1 write (W) execute (x)"
Directory Read conteatsof | Addorelete i | Reference gy move -
firetoy s ndietory | ety I
Using commands
. ; —_—
Fle Leve ' Red o copyf lesin | Change o delte les | Rumexeyg e
directory

--——-""—-——-.-—-'_‘

R A

Directory level permissions

1. Read permission.
2. Write permission.

3. Execute permission.

File Level Permission

1. Read permission.

2. Write Permission.

3. Execute Permission.

Checking Permission

* To check the permissions of a file or directory,
we use the long list command (Is -l).

Changing Permission (chmod)

* When a directory or a file is created, the
system automatically assigns default
permissions.

 The owner of the directory or file can change
them. To change the permissions, we use the
chmod command.

Syntax:-

///')
R i

i

Wy
/5’5’; /f%/ g/ /
i e
/ / ’/é//////,/;/ /l,}//:f:/
/ ,"/'.') //// ”’////./
7, ’,/,/ ////’M,f ',',ffﬁ",

i

-R: recursive

symbolic
or octal

le/directory

* There are two ways to change the permissions:

Changing
Permissions

’ Symbolic I I Octal I

........................

Symbolic Codes:-

—— — =
chmod -options modes | [file/directory I
e |
Who C?perator]\ﬁermissions'
7/ ‘
u = r
9 + w
O
a - X
Example

l chmod u=rwx,g+w,o-w memo.doc .

TABLE 4.2 Common Symbolic chmod Commands

Command

Interpretation

chmod u=rwx file

Sets read (r), write (w), execute (x) for user.

chmod g=rx file

Sets only read (r) and execute (x) for group;
write (w) denied. |

chmod g+x file

Adds execute (x) permission for group; read
and write unchanged

chmod a+r file

Adds read (r) to al] users , write and execute
unchanged.

chmod o-w file

Removes others’ wite () permission; read and
execute unchanged,

e QOctal codes:-

Permission r w X r = x| |r - X
Octal Value |4 2 1

chmod 755 file_name

............................

Common Symbolic chimod Commands

o — o —

— | Descﬂptlon

m file : ‘\nbM.s il lor all lhm sutlngs

1 chood TS0 directory | Urdl group read + execut; ofhes r%lr

‘_c‘:: . 6l file User and groupread 4 wrie, others egd only l
‘ 644 file User read + write, group and others read only 41
[hmod 711 progran Userall, groupand oter ey only 1

!

./

Option:-
 There is only one option, recursion (-R).

* The chmod recursion works just as in other
commands. Starting with the current working
directory, it changes the permissions of all files
and directories in the directory.

* [t then moves to the subdirectories and
recursively changes all of their permissions.

§-$ 1s -1lR unixdsec '
| 30 10:36 filel

total 4 e 24 vt)

: 120 aug
— W 1 gilbexg stalfl R i L i
-::‘:—r—-;:-.- 1 ;mmgg staff - 120 Aug 3¢ 10:38 fxie? N
Arwier -3z —— 2 gilberg ''starEf ' % 5172 Aug 30 10:3% su K):*j.x'
drwKyr-xy-—-— 2 gilbexyg staff L uB42 aug 30 _10239 subDixB

unixdgec/subDirA:

eoctal 'k L :

—rW—Y - - —— 1 gilberg staff - - A20 Aug 30 10:39 filela
unixdsec/subiizrB:

total 1 I3 i S v

DTS — 1 gilberg staf€ 120 Aug 30 10:39 filein

" % chmod -R o-r unixdsec e AT F 34 '
' : FTivs

$ 4is -R1 unixdsec

total 4 ' . _
R 5 e T 1 gilkberg stzaff R B h g1 P

i - . [I
o YNF e F e ot o e 1 gilbexg staff { 3 130 Aug gg 180: 36 £ilas
ArwHE ~XK— =, 2 gilberg, K staff BE2 Bug 3 19:38 files
LTI L Harem = 2 gilberyg staff 512 fxser oo 10:38 Subnira_

10:39 S
. SubDer
unixndecec/sublDirhs

otal 1

e YR e F o e 1 gilbexrg staff 120 Aug 39

TS B

unixéﬁec/ﬁubnirnz

,:,C)cal 1 . 120 . Fow = > - = Lao§ s ;
' 1 gjlbera staff, ., 120 Aug 30 1535 g

3

roasaem e 2bp i pA SO e mth 15

User mask (umask) command

* The permissions are initially set for a directory

or file using a three digit octal system variable,
the user mask (mask).

* When a new directory or file is created, the

number in the mask is used to set the default
permissions.

e The default permissions are 777 for a
directory and 666 for a file.

* To display the current user mask setting, use
the umask command with no arguments.

 To set it, use the command with the new mask
setting.

Syntax:-
* umask option code

Example:-
Sumask

000

Sumask 022
Sumask

022

Changing Ownership and Group

* Every directory and file has an owner and a
group. When you create a directory or file,
you are the owner and your group is the

group.

e There are two commands that allow the
owner and group to be changed.

* The change ownership (chown) command can

change the owner or the owner and the
group.

* The change group (chgrp) command can
change only the group.

Change ownership (chown)

e The owner and optionally the group are

changed with the change ownership (chown)
command.

* The new owner may be a login name or a user
id (UID). The group is optional.

* The group does not have to be changed when
the owner is changed. Unless the new owner
is not a member of the current group.

* Only the current owner or super user may
change the ownership or group. This means
that once the ownership is changed, the
original owner cannot claim it back.

 Either the new owner or the system
administrator must change it back.

Example:-
* Schown forouzan filel

Options:-

* (-R):- when the recursive option is used with a
directory, all files in the directory and all
subdirectories and their files are changed
recursively.

Change Group (chgrp)

* To change the group without changing the

owner, you use the change group (chgrp)
command.

* Syntax:-

Example:-
Schgrp proj15 file2

Command

Description

Options

Synopsis: chown [-option] owner [:group] lis
Changes the owner (and the group associated to) a list of
files or directories.

Synopsis: groups [user id]
Displays the user’s group.

Synopsis: umask [mask]
Displays or sets the default permission for newly created
files or directories.

Conmand Despon .o
e Synapss:chy [opion goup :

Changes & group associated witha it of s or dircto-
185

Symapsis: chmod [-option)] mode it
Setsor changes the permission of st of les or ireg-

—_J

N

df
du
mount

umount

DISK UTILITIES

df

 The df command, stands for Disk Free, reports
file system disk space usage.

* |t displays the amount of disk space available
on the file system in a Linux system.

e The df command reports how much disk
space we have (i.e free space) whereas the du
command reports how much disk space is
being consumed by the files and folders.

1. View entire file system disk space usage

Run df command without any arguments to
display the entire file system disk space.

Example:- S df

The result is divided into six columns.
Filesystem — the filesystem on the system.

1K-blocks — the size of the filesystem,
measured in 1K blocks.

Used — the amount of space used in 1K blocks.

Available — the amount of available space in
1K blocks.

Use% — the percentage that the filesystem is
In use.

Mounted on — the mount point where the
filesystem is mounted.

2. Display file system disk usage in human
readable format

If you want to display them in human
readable format, use -h flag.

Syntax:-

Sdf -h

F1lesystem
/dev/loop@
none

udev

tmpfs

none

none

none

/dev/sda3

S1ze

186G
4.0
483

99
5.0
492
100
167G

e s e B =

Used Avail Use% Mounted on

156 2.56
0 4.0K
4.0K 483M
1.4M 9/M
0 5.0M
1.8M 49aM
20K 100M
157G 9.96G

86% /

0% /sys/fs/cgroup
1% /dev

2% /run

0% /run/lock

1% /run/shm

1% /run/user

95% /host

3. Display disk space usage only in MB

To view file system disk space usage only in
Megabytes, use -m flag.

Syntax:-

S df -m

S df -m

Filesystem 1M-blocks Used Avallable Use% M
dev 3939 0 32939 0% /dev

run 3945 2 3944 1% /run

/dev/sdaZ 467212 418742 24716 95% /

tmpfs 3945 2¢& 3520 1% /dev/shm

tmpfs 3945 0 3945 0% /sys/fs/cgroup

tmpfs 3945 12 3933 1% /tmp

/dev/loop0 83 83 0 100% /var/lib/snapd/snaj
/dev/sdal 93 55 32 €4% /boot

tmpfs 789 1 789 1% /run/user/1000

4. List inode information instead of block
usage

We can list inode information instead of
block usage by using -i flag.

Syntax:-

S df -i

ffusing -1 with df//

§df -i kt.txt
Filesystem Inodes Ilsed
jdev/thel 459251 45

/*showing inode info
of file system
having file kt.txt */

« I

IFree IuseXk Mounted on

459233

1% /snap/core

5. Display the file system type
To display the file system type, use -T flag.

Syntax:-

Sdf-T

Jusing -T with df//

$df -T kt.txt
Filesystem Type 1K-blocks Used Available U
Jdev/the? squashfs 1957124 1512 1555612

/* you can use
-T with df only
to display type of
all the mounted

tfile systems */

6. Display only the specific file system type

We can limit the listing to a certain file
systems. for example ext4. To do so, we use -

t flag.

Syntax:-

S df -t ext4d

5 df -t extd

F1lesystem 1K-blocks Used Available Use% Mou
[dev/sda2 478425016 428790896 25308436 95% /
/dev/sdal 95054 55724 32162 64% /boot

7. Exclude specific file system type

Some times, you may want to exclude a
specific file system from the result. This can
be achieved by using -x flag.

Syntax:-

S df -x ext4

Filesvstem 1K-blocks Used Available Use% Mounted on

dev40332160 4033210 0% dev
111114[]38880 11204037760 1% /ran

mpfs

3888

tmpts 4038880

tmpts 4038880

devloopl) 84
tmpts 807776 28 SO7748 1% runfuser 1000

J0116 4012764 1% /devishm

) 4038880 0% sys s caroup
11984 40208% 1% tmp

196 84096 0 100% varlib/snapd smap core/432]

8. Display usage for a folder

To display the disk space available and where
it is mounted for a folder, for
example /fhome/sk/, use this command:

Syntax:-

S df -hT /home/sk/

yai-i] home/sk/
Flesystem Type Size Used Avail Use?s Mounted on

devisdal ext4 43 /G 405G G/

du

 du command, short for disk usage, is used to
estimate file space usage.

* The du command can be used to track the files
and directories which are consuming excessive
amount of space on hard disk drive.

Svotax:

du [OPTION]... [FILE]...
du [OPTIONT]... —filesO-from=F

Examples
du home/mandeep/test
Output:

44 /homemandeep/test/data

2012 /home/mandeep/test/system design

24 /homemandeep/test/table’sample table/tree
28 /homemandeep/test/table/sample table

32 /homemandeep/test/table

100104 /home/mandeep/test

Options

1. If wewant toprnt sizes in human readable format(K, M, (), use -h option

du -h home/mandeep/test
Output:

44K 'homemandeep/test/data

20M /homemandeep/test/system design

24K homemandeep/test/table/sample table/tree
28K home'mandeep/test/table/sample table
32K homemandeep/test table
98M /homemandeep/test

2. Use-a option for printing all files including directories.
du -a -h /home/mandeep/test
Output:

4 0K /home/mandeep/test/blahl-new
4 0K /home/mandeep/test/fbtest.py
8.0K /homemandeep/test/data’d txt
4 0K /home/mandeep/test/data// txt
4 0K /home/mandeep/test/data’]l txt
4 0K /home/mandeep/test/data/3 txt
4 0K /home/mandeep/test/data/t txt
4 0K /home/mandeep/test/data/2 txt
40K /homemandeep/test/data/8 txt
8.0K /homemandeep/test/data’> txt
44K /home/mandeep/test/data

4 0K /home/mandeep/test/notifier. pv

3. Use -c option to print total size

du -c-h /home/mandeep/test

Output:

44K /homemandeep/test/data

20M /homemandeep/test/system design

24K /homemandeep/test/table/sample table/tree
28K /homemandeep/test/table/sample table
32K /home/mandeep/test/table

98M /home/mandeep/test
9EM total

4. To print sizes till particular level, use -d option with level no.
du -d 1 /home/mandeep/test

Output:

44 /homemandeep/test/data

2012 /home/mandeep/'test/system design
32 /home/mandeep/'test/table

100104 /home/mandeep/test

Now trv with level 2, vou will get some extra directories
du -d 2 /home/mandeep/test

Output:

44 /home/mandeep/'test/data

2012 /home/mandeep/'test/system design
28 /homemandeep/test/table/sample table
32 /home/mandeep/test/table

100104 /home/mandeep/test

3. Get summary of file system using -s option

du -s homemandeep/test
Output:

100104 /home/mandeeptest

6. Get the timestamp of last modified using —-time option

du --time -h /home/mandeep/test

Output:

4K 2018-01-14 22:22 /homemandeep/test/data

20M 2017-12-24 23:06 homemandeep/test/system design

4K 2017-12-30 1020 /home/mandeep/test/tab Efsamglﬂ table/tree
28K 2017-12-30 10:20 /homemandeep/test/table/sample table
32K 2017-12-30 1020 /home/mandeep/test/table
98M 2018-02-02 1732 /home/mandeep/test

mount

* All files in a Linux filesystem are arranged in
form of a big tree rooted at ‘/".

* These files can be spread out on various
devices based on your partition table, initially
your parent directory is mounted(i.e attached)
to this tree at ‘/‘, others can be mounted
manually using GUI interface(if available) or
using mount command.

* mount command is used to mount the
filesystem found on a device to big tree
structure(Linux filesystem) rooted at /.

* Conversely, another command umount can be
used to detach these devices from the Tree.

Svyntax:

mount -t tvpe device dir

Other forms:
mount [-1-|-V]

mount -a [-fFnrsvw] [t fstvpe] [-O optlst]

mount [-fnrsvw’

R L L

mount [-fnrsvw:

pen

o options] device(d
|-t fstvpe] [-0 options] device dir

Some Important Options:

| : Lists all the file systems mounted yet.

h : Displays options for command.

V : Displays the version information.

a : Mounts all devices described at /etc/fstab.
t : Type of filesystem device uses.

T : Describes an alternative fstab file.

r : Read-only mode mounted.

v Diplys mfurmannn abuut flle st muunled
vive p r]ﬁ.rw ﬁﬁ IQH | |

vivek@vivek-XS56U0K:=5 sudo moun

umlu]nwL (556 |an 1

Mounts file systems:
vivek@vivek-X556UQK: =
vivek@vivek-X556UQK: ~¢
vivek@vivek-X556UQK: ~S
vivek@vivek-X556UQK: ~5

vivekgvivek-XSS6UQK: =

vivek@vivek-X556U0K:~5 |

Displays version mformation:

SN it

Ty

umount

e The umount command detaches the file
system(s) mentioned from the file hierarchy.

* Note that a file system cannot be unmounted
when it is busy’ — for example, when there
are open files on it, or when some process has
its working directory there, or when a swap
file onitis in use.

* The offending process could even be umount
itself — it opens libc, and libc in its turn may
open for example locale files.

* Alazy unmount avoids this problem

SYNOPSIS
e umount [-hV]

 umount -a [-dflnrv] [-t vfstype] [-O options]
 umount [-dfinrv] {dir|device}...

OPTION :
-V :- Print version information and exit.

-h :- Print a help message and exit.

-V :- Run in verbose mode.

-n :- Unmount without writing in /etc/mtab.

-r :- In case unmounting fails, try to remount read-only.

-d :- In case the unmounted device was a loop device, also
free this loop device.

EXAMPLES

1. Unmount a simgle mount pomt
umount /mydata

R R

). Unmount more than one mount pomnts

Umount allows vou to unmount more than mount point In 2 single execution of umount of command as
follows:
= umount mydata /backup

mount | grep backup

e

4. Forcefully unmount a filesystem

umount provides the option to forcefully unmount a filesystem with option -f when the device 1s busy as
shown below:

7 umount -f /mnt
Note : If this doesn 't work for you, then you can go for lazy unmount.
). To unmount files and directones of a specific type, enter:

= umount -t test

[This unmounts all files or directories that have a stanza in the /etc/filesystems file that contains the
type=test attnbute.

TEXT PROCESSING UTILITIES

* UNIX provides a number of powerful
commands to process texts in different ways.
These text processing commands are often

implemented as filters.

* Filters are commands that always read their
input from ‘stdin” and write their output to

‘stdout’.

* By default, when using a shell terminal,
the stdin is from the keyboard, and
the stdout is to the terminal.

* Filters work naturally with pipes. Because a
filter can send its output to the monitor, it can
be used on the left of a pipe, because a filter
can receive its input from the keyboard, it can
be used on the right of a pipe.

* In other words, a filter can be used on the left
of a pipe, between two pipes, and on the right
of a pipe.

filter

| command

|
|
|
| , command I
|
!

|

* This UNIX text processing commands is
divided into 3 parts.

1. Unix Filters
2. Unix pipes
3. More filter commands like awk and sed.

head
tail
cut
Paste
sort
tr
uniqg
WC

. Ccmp
10.diff

O 00N U & W E

11. comm
12. join

head Command

 While the “cat” command copies entire files,
the head command copies a specified number
of lines from the beginning of one or ore files
to the standard output stream.

* By default, it displays starting 10 lines of any
file.

Syntax:

* head <file name>
Example:

* head jtp.txt

Y v

sssit@JavaTpoint: ~/Desktop

sssit@JavaTpoint:~/Desktop$ head jtp.txt
this is javatpoint

you are learning linux here

thankyou

thankyou

thankyou

a

Sssit@Javannint:~fDesktJ§5 I

Head command for multiple files

* |f we'll write two file names then it will display
first ten lines of each file separated by a
heading.

Syntax:

* head <file name> <file name>
Example:

* head docl.txt doc2.txt

OAM sssit@lavaTpoint: ~/Desktop

sssit@lavaTpoint:~/Desktop$ head docl.txt doc2.txt
==> docl.txt <==

hello

welcome to

javatpoint

this 1is

linux tutorial

==> doc2.txt <==

hello everyone

this is

Linux

learn linux commands

with javatpoint
sssit@lavaTpoint:~/Desktop$ I

Options:-

1. -n:- The 'head -n' option displays specified
number of lines.

Syntax:

* head -n <file name>

Example:
* head -15 jtp.txt

A8 E sssit@JavaTpoint: ~/Desktop

sssit@lavaTpoint:~/Desktop$ head -15 jtp.txt
this is javatpoint

you are learning linux here

thankyou

thankyou

thankyou

E

b
c
d
e
¢
g
h
i
]
3

ssit@lavaTpoint:~/Desktops ||

tail Command

* The tail command also outputs data, only this
time from the end of the file.

Syntax:-

* tail [options] filename
Example:-

e Stail hai.txt

* |t has several options. If the option starts with
a plus sign, tail skips N-1 lines before it begins
to output lines from the file and continues
until it gets to the end of the file.

 |f it starts with a minus, such as -25, it outputs
the last number of lines specified in the
option.

* |f there are no line options, the default is the
last 10 lines.

Option Code | Description

Count from beginming | - +17 | Skips N~ 1 lines; copies rest to end of file

Count from end - | Copies last N lines,
Count by Jmes -1 | Counts by line (default)

Count by characters | -c | Counts by character

Count by blocks - | Counts by disk block.

Reverse order -t | Qutputs in reverse order (from bottom to top).

f-uan SARAEAREARAALA NS AR LSRN RARRRAAT AT ARARASAANEPAARARAIIRRORARAN MRS RA AN BARANAARRSABRAARS AN ERR BRI AAPA N L R B R

s tail -2r goodStudents

E Y o

’. §- s".' el A,
of their oollsyse.

aack

s

NN I/

y VA
$:« % N 24, &’//a PO 1/2} Aty G G
2 ("hv""w % N‘\?; g <».w3 ?Jy/ 0 o ﬁfﬁ Gttt aboas sy
! .
MNestosvnnivrsearnens LR L I o e e R DR R R L AR R LA D L Ll T L R L R R R L IRNsaRRRpnnie)

e We can combine the head and tail commands

to extract lines from the center of a file.

| ¢ head -13 TheRaven | ta11'+3

remenhey

. ‘

9

:

p

And ea@h-g@par@ﬁw»&ying euber wrought its ghost upn the £loo

e

it

the morrow, -~ vainly I hed sought to borrow

From ny books suscease of sorvow -« sorzow

eless hete for gvernore.

| M, distingtly

;'Eag%rly ! wigh

{ For the rare and radiant naiden whou the angels name Tenore

cut Command

* The basic purpose of the cut command is to
extract one or more columns of data from

either standard input or from one or more
files.

* Syntax:-
cut OPTION... [FILE]...

* Since cut looks for columns, we must have

some way to specify where the columns are
located.

* This is done with one of two command
options. We can specify what we want to
extract based on character positions within a
line or by a field number.

Specifying Character Positions:-

* Character positions work well when the data
are aligned in fixed columns.

FABLE 6.3 Data for the Fire Largest Cties the United States (1990 Census)

‘*.».:.-va. W as

3
|

Chicago 1L 2783726 3005072 1434029
Bouston X 1630553 1595138 1049300
1os Angeles CA 3485398 2968528 1791011

|

ohiladelphia PA 1585377 1688210 1736895

| New York NY 7322564 7071639 3314000
i

t

!

 City is a string of 15 characters, state is 3
characters (including the trailing space), 1990
population is 8 characters, 1980 population is
8 characters, and work force is 8 characters.

* To specify that the file is formatted with fixed
columns, we use the character option, -c,
followed by one or more column
specifications.

Example:-
Scut —c1-14,19-25 censusFixed

SESSION 6.1 Example of cut Command
§'$ cut -cl-14,19-25 censusFixed

| Chicage 2783726

| Houston 1630553

. Los Angeles 3485398

| Mew York 7322

;W
T
O

R
“J
3

i < z ». - z e 5% >
. philadeliphia 158

Field Specification:-

* While the column specification works well
when the data are organized around fixed
columns, it doesn’t work in other situations.

Chicago<tab> IL<taby
Bouston<taby TX<tab>
Los Angeles<tab> CActaby
New York<tab» NY<tab>
Philadelphiactab> PActab>

2783726<tab>
1630553 <tab>
3485398<taby
71322564<tab>
1585577<tab»

3005072<tab>
1595138<tab>
2968528<tab>
1071639<tab>
1688210<taby

1434028
1049300
1791011
3314000
736895

* To specify a field, we use the field option (-f).
Fields are numbered from the beginning of
the line with the first field being field number
one.

Example:-
e Scut —f1 filename

AR

& A’/J

) ff
:-’.’::oéx- wf"% 'r/f{

(g," " Y, ,;W; n" L 10
/' 2% % 2% 5 g5 %
20 7 Tt ns? Togt Sinil il

AR R
WA

v&

\'-

e
&
N
33
\

&3

- »g?ﬁzzf/:lg. wﬁ oy

” g
g, i, % e
A A

ATl BV A VY

e

APTAVARNAT U A

=
3

a0 Ve 'i
.'j’:'a :"-.-:- r’:?

i

bl ﬁ\MUﬁv-fﬁMmom

cut -f£f1 census'rab

b."".".'. .l"'.'..'.......'....'..'.'....'lll'.'.'..'ll.l..l'..l'....l......... .’l.I...'l.'.'..'.'l..lll."".l".'..l..l"“...‘..'.

* Note:- The cut command is similar to the head
and tail commands. The cut command cuts
files vertically (columns), whereas the head
and tail commands cut files horizontally
(lines).

roerermde Wad o WULLOMIMana vpuor
—

Option (= iy v iCode fReslts -~ ¥
: Extracts fixed columns specified by column numbe

Character -C N
Field -f | Extracts delimited columns.
Delimiter | -d | Specifies delimiter if not tab (default).

Suppress | -5 | Supptesses output if no delimiter in line.

paste Command

e Paste command is one of the useful
commands in Unix or Linux operating system.

* |t is used to join files horizontally (parallel
merging) by outputting lines consisting of lines
from each file specified, separated by tab as
delimiter, to the standard output.

Syntax:
e paste [OPTION]... [FILES]...

 Without any option paste merges the files in
parallel.

{ paste nunber state capital
[Arunachal Pradesh — [tanagar
] lssan Dispur

3 Andhra Pradesh Hyderabad

l Bihar Patna

> (nhattisgrah Ratpur

Options:

1. -d (delimiter): Paste command uses the tab
delimiter by default for merging the files.

The delimiter can be changed to any other
character by using the -d option.

If more than one character is specified as
delimiter then paste uses it in a circular
fashion for each file line separation.

Only one character 1s specified

§ paste -4 "|" number state capital

l
!
j

Arunachal Pradesh| Itanagan
fssan|Dispur
Andhra Pradesh|Hyderabad

Bihar|Patn:

(hhattisgrah|Raipur

llore than one character is specified
§ paste -d "|," number state capital
1{Arunachal Pradesh,ltanagar

2| Assam, Dispur

3|Andhra Pradesh,hyderabad
4|Bihar,Patna
5|Chhattisgrah,Raipur

First and second file is separated by '|" and second and third is separated |

After that list is exhausted and reused.

e -s (serial): We can merge the files in
sequentially manner using the -s option.

It reads all the lines from a single file and
merges all these lines into a single line with
each line separated by tab.

And these single lines are separated by
newline.

oaste - b state capital

* Combination of -d and -s: The following
example shows how to specify a delimiter for
sequential merging of files:

I,

§ paste -5 -4 ":" number state capital

L3S

Arunachal Pradesh;Assam;Andhra Pradesh;Binar:Chhattisgran
[tanagar:Dispur:Hyderabad: Patna: Ratpur

e —version: This option is used to display the
version of paste which is currently running on
your system.

$ paste --version

paste (GNU coreutils) 8.26

Packaged by Cygwin (8.26-2)

Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GHU GPL version 3 or later .

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Written by David M. Ihnat and David MacKenzie.

SORT command

SORT command is used to sort a file, arranging
the records in a particular order.

e SORT command sorts the contents of a text file,
line by line.

e sort is a standard command line program that
prints the lines of its input or concatenation of all
files listed in its argument list in sorted order.

* By default, the entire input is taken as sort
key. Blank space is the default field separator.

 Examples

Command :

§ cat » file.txt
abhishek
chitransh

satish

rajan

naveen

divyam

harsh

* Sorting a file : Now use the sort command
Svntax :

$ sort filename.txt

Command :

$ sort file.txt

Output :
abhishek
chitransh
divyam
harsh
naveen
rajan

satish

* Sort function with mix file i.e. uppercase and
lower case :

When we have a mix file with both uppercase
and lowercase letters then first the lower case
letters would be sorted following with the
upper case letters

e Example:

e Options with sort function
-0 Option:

Unix also provides us with special facilities like
if you want to write the output to a new file,
output.txt, redirects the output like this or you
can also use the built-in sort option -0, which
allows vyou to specify an output file.

$ sort inputfile.txt » filename.txt

$ sort -o filename.txt inputfile.txt

Command :

$ sort file.txt » output.txt
$ sort -o output.txt file.txt
$ cat output.txt

Output :
abhishek
chitransh
divyam
harsh
naveen
rajan

satish

* -r Option: Sorting In Reverse Order : You can
perform a reverse-order sort using the -r flag.
the -r flag is an option of the sort command
which sorts the input file in reverse order i.e.
descending order by default.

* -n Option : To sort a file numerically used —n
option. -n option is also predefined in Unix as
the above options are. This option is used to
sort the file with numeric data present inside.

Command :

% cat » filel.txt
5@

39

15

8%

209

* -nr option : To sort a file with numeric data in
reverse order we can use the combination of
two options as stated below.

$ sort -nr filename.txt

Command :

% sort -nr filel.txt
Output :

208

89

H@

39

15

-k Option : Unix provides the feature of
sorting a table on the basis of any column
number by using —k option.

b cat » employee.txt
manager 5000

clerk 4000
employee 6060
peon 4500

director 9406
guard 1060

$ sort -k filename.txt

Command :

9 sort -k 2n employee.txt

guard 3000
clerk 4000
peon 4500

manager 5000
employee b0EQ
director 9060

-u option : To sort and remove
duplicates pass the -u option to sort. This will
write a sorted list to standard output and
remove duplicates.

This option is helpful as the duplicates being
removed gives us an redundant file.

* -M Option : To sort by month pass the -M
option to sort. This will write a sorted list to
standard output ordered by month name.

% cat > months.txt

FeDruary
January
March
August
September

* Syntax:

§ sort «Il filename, it

Command :

$ sort -M months.txt
$ cat months.txt
Output :

January

February

March

August

September

tr Command

e The tr command in UNIX is a command line
utility for translating or deleting characters.

* |t supports a range of transformations
including uppercase to lowercase, squeezing
repeating characters, deleting specific
characters and basic find and replace.

* [t can be used with UNIX pipes to support
more complex translation. tr stands for

translate.

* Syntax:-

 tr [OTION ST (570

1. How to convert lower case to upper case
To convert from lower case to upper case the
predefined sets in tr can be used.

$cat greekfile
Output:

WELCOME TO
GeekstorGeeks

$cat greekfile | tr “[a-z]” “[A-Z]"
Output:

WELCOME TO
GEEKSFORGEEKS

Qutput:

2. How to translate white-space to tabs

The following command will translate all the
white-space to tabs.

§ echo "elcone To GeeksforGeeks” | tr [ispace:] '\t!

Qutput

lelcome To Geeksforbeeks

3. How to translate braces into parenthesis

You can also translate from and to a file. In
this example we will translate braces in a file

with parenthesis.

fcat greekfile

Qutput:

TWELCOME TO)

GeekstorGeeks

tr "{}' "()' newfile.txt

Qutput:

4. How to use squeeze repetition of
characters using -s

To squeeze repeat occurrences of characters
specified in a set use the -s option.

This removes repeated instances of a
character (or) we can say that, you can
convert multiple continuous spaces with a
single space

§ ocho "lelcone To GesksforGeeks" | tr -5 [1spacer] '

Qutpt

Welcome To GeeksforGeeks

5. How to delete specified characters using -d
option

To delete specific characters use the -d option.
This option deletes characters in the first set

specified.

§ echo "lelcone To GeeksforGeeks” | tr -4 '

(ot

elcome To GeeksforGeeks

6. To remove all the digits from the string,
use

§ echo "ny 10 s 73535 | tr -d [:digit:]

7. How to complement the sets using -c
option

You can complement the SET1 using -c option.
For example, to remove all characters except
digits, you can use the following.

Output:

Qutput:

uniqg Command

* The uniq command in Linux is a command line

utility that reports or filters out the repeated
lines in a file.

* |[n simple words, uniq is the tool that helps to
detect the adjacent duplicate lines and also
deletes the duplicate lines.

Syntax of unig Command :

Sunig [OPTION] [INPUT[OUTPUT]]

Example:

Options
1. Using -c option : It tells the number of
times a line was repeated.

ffusing unig with -c//

$funig -c kt.txt

3 I love music.

1

2 I love music of Kartik.
1

1 Thanks.

/*at the starting of each

line its repeated number is

displayed*/

2. Using -d option : It only prints the repeated
lines.

//using uniq with -d//

funiq -d kt.txt
I love music,

I love music of Kartik.

/*it only displayed one

duplicate line per group*/

3. Using -D option : It also prints only duplicate
lines but not one per group.

S/7using -D option//

Puniq -D kt.txt

I lJove music.

love music.

Jove music.

lJove music of Kartik.

Mo

lJove music of Kartik.

S* all the duplicate lines
are displayed™*/

4. Using -u option: It prints only the unique
lines.

ffusing -u option//

suniq ~u Kt.txt
Thanks.

S only unigue lines are
displayed™*/

5. Using -w option : Similar to the way of
skipping characters, we can also ask uniq to
limit the comparison to a set number of
characters. For this, -w command line option
Is used.

/S /displaying content of f3.txt//

$cat f3.txt

How it is possible?
How it can be done?
How to use it?

/S/now using -w option//

Puniqg -w 3 f3.txt
How

/*as the first 3 characters

of all the 3 lines are same
that's why unig treated all these
as duplicates and gave output
accordingly*>/

6. Using -i option

: It is used to make the

comparison case-insensitive.

S I/Adsplavyving

Scmt a4 . txt
b LOVE MUSIC
3 1ove mu=3ic
THANKS

ST aus3inmng unmnig
Sunig a4 . tTtx<Tt
X LOVE MUSIC
-8 love mu=s3ic
THANKS

S the 1 inmnes
as

=
S I how wusing
Sunicg

I LOVE
THANKS

MUS I C

L T hows sSecomncdd

o T

duplicoates with
F— L iag™-J/s

- OoOpPpt ion

coOnNnMtents ¥ x - T e

CoOmmmama) S

Sar~-em - T Treated

sdidmple

— A option, /

-2 TO . TxT

LA e is remo s et
a2 = T E T Ry

wc Command

e wc stands for word count. As the name
implies, it is mainly used for counting purpose.

e It is used to find out number of lines, word
count, byte and characters count in the files
specified in the file arguments.

* By default it displays four-columnar output.

* First column shows number of lines present in
a file specified, second column shows number
of words present in the file, third column
shows number of characters present in file
and fourth column itself is the file name
which are given as argument.

Syntax:

* wc [OPTION]... [FILE]...

e Let us consider two files having
name state.txt and capital.txt containing 5
names of the Indian states and capitals
respectively.

$ cat state.txt
Andhra Pradesh
Arunachal Pradesh
Assam

Bihar
Chhattisgarh

$ cat capital.txt
Hyderabad
Ttanagar

Dispur

Fatna

Raipur

e Passing only one file name in the argument.

& wec state.txt
5 7 b3 state.txt
OR
$ we capital.txt
5 5 45 capital.txt

Passing more than one file name in the argument.

T wc state.txt capital.txt
5 f B3 state.txt
5 5 45 capital.txt
1l 12 198 total

Options:

1. -lI: This option prints the number of
lines present in a file. With this option wc
command displays two-columnar output, 1st
column shows number of lines present in a file
and 2nd itself represent the file name.

With one file name
$ we -1 state.txt
5 state.txt

With more than one file name
$ we -1 state.txt capital.txt
S state.txt
S capital.txt
19 total

2. -w: This option prints the number of
words present in a file. With this option wc
command displays two-columnar output, 1st
column shows number of words present in a
file and 2nd is the file name.

With one file name
$ we -w state.txt
/7 state.txt

With more than one file name
$ we ~w state.txt capital.txt
/ state.txt
o> capital.txt
12 total

3. -c: This option displays count of
bytes present in a file. With this option it
display two-columnar output, 1st column
shows number of bytes present in a file and
2nd is the file name.

With one file name
2 we -c state.txt
b3 state.txt

kWith more than one file name
£ we -c state.txt capital.txt
63 state.txt
45 capital.txt
18 total

* There are three unix commands that can be
used to compare the contents of two files:

— Compare (cmp)
— Difference (diff)

— Common (comm)

cmp Command

e cmp command in Linux/UNIX is used to
compare the two files byte by byte and helps

you to find out whether the two files are
identical or not.

Syntax:-
e cmp options... FromFile [ToFile]

Example
* Scmp filel.txt file2.txt

1. If the files are not identical : the output of the above command will be :

$emp filel.txt filel.txt
filel.txt filel.txt differ: byte 9, line 2

/*indicating that the first mismatch found in

two files at byte 28 in second line*/

2. If the files are identical : you will see something like this on your screen:

Semp filel.txt filel.txt
5 _

/*indicating that the files are identical*/

Options:-

1. -b(print-bytes) : If you want cmp displays
the differing bytes in the output when used
with -b option.

{/...cmp command used with -b option...//

femp -b filel.txt filed.txt
filel.txt file2.txt differ: 12 byte, line 2 is 154 1 151 i

/* indicating that the difference is in 12

byte ,which 1s '1" in filel.txt and '1" in filel.txt.®/

 The values 154 and 151 in the above output
are the values for these bytes, respectively.

2. -l option : This option makes the cmp
command print byte position and byte value
for all differing bytes.

e o comp command used with -1 option.../J/f

TFecmp -1 Filel.txt FileZ.txt
28 12 56
21 124 12
22 15 124
23 151 15e
24 163 151
25 48 163
26 146 42
27 15& 151
28 12 24
29 124 145
3e 157 163

SFindicating that files are diffterent

displaying the position of differing

bytes along with the differing bytes
in both file* /)

3. -s option : This allows you to suppress the
output normally produced by cmp
command j.e it compares two files without
writing any messages. This gives an exit value
of O if the files are identical, a value of 1 if
different, or a value of 2 if an error message
occurs.

J/...cmp command used with -s option...//

$cmp -s filel.txt file.txt
1

J*indicating files are different without

displaying the differing byte and line*/

diff command

e diff stands for difference. This command is
used to display the differences in the files by
comparing the files line by line.

* Unlike its fellow members, cmp and comm, it
tells us which lines in one file have is to be
changed to make the two files identical.

https://www.geeksforgeeks.org/cmp-command-linux-examples/
https://www.geeksforgeeks.org/comm-command-linux-examples/

* The important thing to remember s
that diff uses certain special
symbols and instructions that are required to
make two files identical.

* |t tells you the instructions on how to change
the first file to make it match the second file.

e Special symbols are:

a : add
change
delete

Ll

0
Ll

Syntax :

diff [options] Filel File2

e Lets

say we have

two

files

with

names a.txt and b.txt containing 5 Indian

stat~-

T 1=
a . T b . txit

T cat a.txt
Gujarat
Utitar Pradesh
Kollkata
Bihar

Jammu and Kashmir

T cat b.txt
Tamil Madu
Gujarat

Andhra FPradesh
BEihar

UUttar pradesh

$ diff a.txt b.txt
Bal

» Tamil Nadu

2,3C3

< Uttar Pradesh
Andhra FPradesh
5ch

Uttar pradesh

LT cat a.txt
Gujarat
Andhra Pradesh
Telancana
Eihar

Uttar pradesh

LT cat b.txt
Gujarat
Andhra Pradesh
BEihar

UUttar pradesh

L difFfFfF a.txt b.txt
Sd2

< Telangana

comm command

e comm compare two sorted files line by line
and write to standard output; the lines that
are common and the lines that are unique.

* Suppose you have two lists of people and you
are asked to find out the names available in
one and not in the other, or even those
common to both.

e comm is the command that will help you to
achieve this.

* |t requires two sorted files which it compares
line by line.

Syntax :

e Scomm [OPTION]... FILE1 FILE2

[/ displaying contents of filel //
$cat filel.txt

Apaar

Ayush Rajput

Deepak

Hemant

[/ displaying contents of filel [/
$cat file2.txt

Apaar

Hemant

Lucky

Franjal Thakral

A using comm command for
comparing two +tiles Jjf
Tcomm Filel.txt FilelZ2.txt
Apaar
Avush Rajput
Deepalk
Hemant
Lounc by
Franjal Thakral

Options for comm command:

1. -1 :suppress first column(lines unique to first
file).

2. -2 :suppress second column(lin es unique to
second file).

3. -3 :suppress third column(lines common to
both files).

SAsuppress first column wusing -1,/
Tcomm -1 Filel.txt fileZ.txt
Apaar
HemantT
Lucky
Franjal Thakral

SAsuppress second column using -2//
Tcomm -2 Filel.txt fileZ.txt
Apaar
HAyush Rajput
Deepalk

Hemant

SAsuppress third column using -3//
Tcomm -2 Filel.txt filelZ.txt
Ayush Rajput
Deepal
Lucboys
Franjal Thakral

join Command

* The join command in UNIX is a command line

utility for joining lines of two files on a
common field.

* join command is used to join the two files
based on a key field present in both the files.

Syntax:

* Sjoin [OPTION] FILE1 FILE2

J// displaying the contents of first file //
$cat filel.txt

1 AAYUSH

2 APAAR

3 HEMANT

4 KARTIK

J// displaying contents of second file //
$cat file2.txt

1 181

2 182

3 183

4 184

J/..using join command...//
$join filel.txt filel.txt

1 AAYUSH 181

2 APAAR 1@2

3 HEMANT 183

4 KARTIK 184

J/ by default join command takes the
first column as the key to join as

in the above case [/

Options
1. using -a FILENUM option : Now, sometimes it
is possible that one of the files contain extra
fields so what join command does in that

case is that by default, it only prints pair able
lines.

What if such unpair able lines are important
and must be visible after joining the files. In
such cases we can use -a option with join
command which will help in displaying such
unpair able lines.

SAdisplaying the contents of filel.txt//,
Scat filel.txt

1 AAYUSH

A EANR

HEMANT

KARTIK

DEEPAK

N W

SAdisplaying contents of filel2 . txt/)
Scat fileZ.txt

1 1a1

2 1a2

3 1a3

A 164

SAusing join command/)/
$jdoin filel.txt File2.txt
OANUSH 1@l

OPAAR 12

HEMANT 183
KARTIK 1&a

=

VI

A although Filel_ txt has extra field the
output is not affected cause the 5 column in

fFfilel.txt was unpairable with any in filel2.t=xt//

SAfusing join with -a option//

/1 is used with -a to display the contents of
first file passed//

$join filel.txt file2.txt -a 1
1 AAYUSH 101

APAAR 192

HEMANT 183

KARTIK 194

DEEPAK

(W T A WH R

/5 column of first file is
also displayed with help of -a option
although it is wunpairable//

2. using -v option : Now, in case you only want
to print unpair able lines i.e suppress the
paired lines in output then -v option is used
with join command.

f/using -v option with join//

$join filel.txt filed.txt -v 1
5> DEEPAK

//the output only prints unpairable lines found
in first file passed//

3. using -i option : Now, other thing about join
command is that by default, it is case
sensitive.

SAdisplaying contents of filel.txt//
$cat Filel.txt

A AAYUSH

E APAAR

C HEMANT

D KARTIK

SAdisplaying contents of filelZ2.txt//
$cat FileZ.txt

a 18l

b 182
c 183
d 1a4d

ffusing -1 option with join//
$j0in -i filel.txt filel.txt
A AAYUSH 101

B APAAR 10!

C HEMANT 193

D KARTIK 194

tee command

* tee command reads the standard input and

writes it to both the standard output and one
or more files.

* The command is named after the T-splitter
used in plumbing. It basically breaks the
output of a program so that it can be both
displayed and saved in a file.

SYNTAX:

e tee [OPTION]... [FILE]...

Options :

1.-a Option : It basically do not overwrite the
file but append to the given file.

anurag@HP: ~
geekforgeeks@~$:cat filel.txt

geeks
geekforgeeks@~$:cat file2.txt

geekforgeeks@~S:wc -1 filel.txt|tee -a file2.txt
3 filel.txt
geekforgeeks@~$:cat file2.txt

3 filel.txt
geekforgeeks@~$:

2.—help Option : It gives the help message and
exit.

SYNTAX :
o geek@HP:~S tee --help

anurag@HP: ~

anurag@HpP:~$ tee --help
Usage: tee [OPTION]... [FILE]...
Copy standard input to each FILE, and also to standard output.

-a, --append append to the given FILEs, do not overwrite

-i, --ignore-interrupts ignore interrupt signals

-p diagnose errors writing to non pipes
--output-error[=MODE] set behavior on write error. See MODE below
--help display this help and exit
--version output version information and exit

MODE determines behavior with write errors on the outputs:
'warn' diagnose errors writing to any output
'warn-nopipe' diagnose errors writing to any output not a pipe
'exit' exilt on error writing to any output
'exit-nopipe' exit on error writing to any output not a pipe
The default MODE for the -p option is 'warn-nopipe'.
The default operation when --output-error is not specified, is to
exit immediately on error writing to a pipe, and diagnose errors
writing to non pipe outputs.

GNU coreutils online help: <http://www.gnu.org/software/coreutils/>
Full documentation at: <http://www.gnu.org/softwarefcoreutils/ftee=
or available locally via: info '(coreutils) tee invocation’
anurag@HpP:~$ I

3.—version Option : It gives the version
information and exit.

SYNTAX :
o geek@HP:~S tee --version

anurag@HPp: ~

anurag@HP:~$ tee --version

tee (GNU coreutils) 8.26

Copyrignt (C) 2816 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it.

There 1s NO WARRANTY, to the extent permitted by law.

Written by Mike Parker, Richard M. Stallman, and David MacKenzie.
anurag@Hp:~$ ||

pg Command

* The pg command displays the contents of text
files, one page at a time.

*pg is a terminal pager program
on UNIX and Unix-like systems for viewing text
files. It can also be used to page through the
output of a command via a pipe.

https://www.computerhope.com/jargon/t/textfile.htm
https://www.computerhope.com/jargon/t/textfile.htm
https://www.computerhope.com/jargon/t/textfile.htm
https://en.wikipedia.org/wiki/Terminal_pager
https://en.wikipedia.org/wiki/Terminal_pager
https://en.wikipedia.org/wiki/Terminal_pager
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Pipe_(Unix)

Syntax:-
* pg [options] [file...]

Options

-number The number of lines per page. Usually, this is the number of CRT lines minus one.

o Clear the screen before a page is displayed. if the terminfo entry for the terminal
provides this capability.

£ Donot pause and display "(EQF)" at the end of a file.

£ Donot sphit long lines.

- Without this option, commands must be termmated by a newline character. With this

option, pg advances once a command letter is entered.

Finger Command

* finger displays the .plan file of a specific user,
or reports who is logged into a specific
machine. The user must allow general read
permission on the .plan file.

Syntax

* finger [options] [user[@hostname]]

nl Command

* The nl command, numbers the lines in a file.

Syntax
* nl [OPTION]... [FILE]...

Examples

cat list_txt

apples

OIanges

potatoes

lemons

oarlic

nl list_txt
1 apples
2 Oranges
3 potatoes
- lemons
2. garlic

|

nl list.txt = nlist.txt

cat nlist_txt
I apples
2 oranges
3 potatoes
4 lemons
z

garlic

W command

e w command in Linux is used to show who is
logged on and what they are doing.

e This command shows the information about
the users currently on the machine and their
processes.

Syntax:
* w [options] user [...]

el el no- et 505K
G0 L Lo, o e
L 1
sl i

16 18
I OO O
05 .25 ettt

i)
|
|
|

A
|]
!

https://media.geeksforgeeks.org/wp-content/uploads/20190325162800/Screenshot-from-2019-03-25-16-25-37.png

Options:
* w -h: This option don’t print the header.
Syntax:- Sw -h

lgoscalefalgoscale-Lenove-apat-330-L51K:

sl

https://media.geeksforgeeks.org/wp-content/uploads/20190325162802/Screenshot-from-2019-03-25-16-25-49.png

* w -u: This option will ignore the username
while figuring out the current process and cpu
times.

Syntax:- Sw -u

algoscalegalgoscale-Lenovo-1deapad-330-15TKR:~S o -
A2 up 44, Luser, load average: 2.25, 202, .82

|

1

USER TIY FR[}M LOGING IDLE JCPU PCPU WAT

algoscal ttyr 10 1130 & 6:53 0,23 /sdin/upstart --user

https://media.geeksforgeeks.org/wp-content/uploads/20190325162803/Screenshot-from-2019-03-25-16-26-00.png

* w -s: This option uses the short format. It will
not print the login time, JCPU or PCPU times.

Syntax:- Sw -s

algoscalegalgoscale-Lenovo-1deapad-330-15TKB:~5 W -
16:12:37 up 4:41, 1 user, load average: 2.21, 2@2, 1.82

[
USeR T FRUH [DLE WAAT
441n

algoscal tty? i n (sbin/upstart --user

https://media.geeksforgeeks.org/wp-content/uploads/20190325162805/Screenshot-from-2019-03-25-16-26-12.png

* w —help: This option will display help message
and exit.

Syntax:- Sw --help

algoscale@algoscale-Lenovo-ideapad-330-15IKB:~5 w --help

Usage:
w [options]

Options:
-h, --no-header do not print header
--no-current ignore current process username
--short short format
--from show remote hostname field
--old-style old style output
--ip-addr display IP address instead of hostname (if possible)

--help display this help and exit
--version output version information and exit

For more details see w(1).

https://media.geeksforgeeks.org/wp-content/uploads/20190325162810/Screenshot-from-2019-03-25-16-26-43.png

* w -i : This option will display IP address
instead of hostname for from field.

Syntax:- Sw -i

gclealosclenoe et SHR 4
3w 0L s, oo e 1
|
;

114
LG
G5t .2 sttt

Mmoo gD
sl 4

)
i
|

https://media.geeksforgeeks.org/wp-content/uploads/20190325162812/Screenshot-from-2019-03-25-16-26-55.png

ulimit Command

e The shell contains a built in command called
"Ulimit" which allows you to display and set
resource limits for users.

* The systems resources are defined in a file
called "/etc/security/limits.conf".

e Ulimit can then be used to view these
settings.

* The basic syntax of the ulimit command
is: ulimit Options limit

Display settings for current user

* To display all of your current settings you can
issue the command: "ulimit -a"

johnk john-desktop:~§ ulimit -a

core file =ize (block=s, -c)
data =seg size (kbyte=s, -d)
zcheduling priority (-e)
file =ize (blocks, -f)
pending signals (-1}
max locked memory (kbyte=, -1)
max memory size (kbytes, -m)
open files (-n)
pipe =ize (512 bytes, -p)
POSIX message queues (byte=, -q)
real-time priority (-x)
stack size (kbyte=s, -3)
cpu time (seconds, -t)
Max USer processes {—u)
virtual memory (kbyte=, -v)

file locks

0
unlimited
0
unlimited
19868

64
unlimited
1024

g

819200

0

8192
unlimited
19868
unlimited
unlimited

unlink Command

* The wunlink command calls and directly

interfaces with the unlink system function,
which removes a specified file.

* Syntax
unlink FILE
unlink OPTION

Options

--help

Display a help message and exit.
--version

Output version information and exit.

Examples
unlink hope.txt

Removes the file name hope.txt, and if there is no
other hard link to the file data, the file data itself is
removed from the system.

https://www.computerhope.com/jargon/h/hardlink.htm
https://www.computerhope.com/jargon/h/hardlink.htm
https://www.computerhope.com/jargon/h/hardlink.htm

grep command

* The grep filter searches a file for a particular
pattern of characters, and displays all lines
that contain that pattern.

e The pattern that is searched in the file is
referred to as the regular expression (grep
stands for globally search for regular
expression and print out).

Syntax:

e grep [options] pattern [files]

Scat > geekfile, txt
WNIX IS great 0S. WLIX 1S Qpensource. umix 1s free os.

leam operating system.
Unix Imux which one you choose.

uNIx 15 easy to leam unix 1s a multiuser os. Leam unix unix is a powerful

1. Case insensitive search : The -i option
enables to search for a string case insensitively
in the give file. It matches the words like
“UNIX”, “Unix”, “unix”.

Serep-1 "UNix" geekfile. txt

Qutput:

UMK Is great 0s. UIIX 1S OPENsource. umx Is free os.
Unix linux which one you choose.

uNIx s easy to leam unix 1s a multiuser os Leam unix unix 1s a powerful

2. Displaying the count of number of
matches: We can find the number of lines that
matches the given string/pattern

Sorep ¢ "unix" geekfile.txt

Output:

2

3. Display the file names that matches the
pattern : We can just display the files that
contains the given string/pattern.

-

Sgrep -1 "unix"

njy

g

Screp -1 "unx™ f1.txt £2.ext 3. xt £4.ixt

Output:
geckfile txt

4. Displaying only the matched pattern : By

C
t
C

efault, grep displays the entire line which has
ne matched string. We can make the grep to

isplay only the matched string by using the -o

option.

Sgrep o'
- " L
unix'' ceekfile. txt

l:hftput:

5. Show line number while displaying the
output using grep -n : To show the line
number of file with the line matched.

Serep-n "unrx' geekfile.fxt

Oufput;

| Is great 05. Wy 15 opensource. umix s free .

415 easy to leam w15 2 multiuser os Leam wnix 1z 1s a powerful

egrep command

* egrep is a pattern searching command which
belongs to the family of grep functions.

* |t treats the pattern as an extended regular
expression and prints out the lines that match
the pattern.

https://www.geeksforgeeks.org/grep-command-in-unixlinux/

Syntax:
* egrep [options] 'PATTERN' files
Example:-

Flle Edit View Search Terminal Help

anindo@anindo-One-21402:~/Docunents$ eqrep Hello hello.c

printf(" World!"):
printf("- it &

* Note: The egrep command used mainly due to
the fact that it is faster than the grep
command.

* The egrep command treats the meta-
characters as they are and do not require to
be escaped as is the case with grep.

* This allows reducing the overhead of replacing
these characters while pattern matching
making egrep faster than grep or fgrep.

Options: Most of the options for this
command are same as grep

https://www.geeksforgeeks.org/grep-command-in-unixlinux/

fgrep command

* The fgrep filter is used to search for the fixed-
character strings in a file.

* There can be multiple files also to be
searched.

* This command is useful when you need to
search for strings which contain lots of regular
HA” o

expression metacharacters, such as “A”, “S”,
etc.

Syntax:
* fgrep [options] [-e pattern_list] [pattern] [file]

Options

e -c option: Displaying the count of number of
matches. We can find the number of lines that
match the given string.

Example:

» Sfgrep -c "usin.g" para

https://media.geeksforgeeks.org/wp-content/uploads/f-1-1.png

* -h option: To display the matched lines.

Example:
* fgrep -h "usin.g" para

https://media.geeksforgeeks.org/wp-content/uploads/f-2-1.png

* -j option: Used in case insensitive search. It
ignore upper/lower case distinction during
comparisons. It matches words like
“geeks*forgeeks”, “Geeks*forgeeks”.

Example:

* fgrep -i "geeks*forgeeks" para

parasfparas. Desktop/cottg /ny-pro
H, (e you usin.g geekstforgeeks f
Geeks*forgeeks 15 best for Learni)
parasfparas:~ Desktop coing ny-pre
fl, | f

|

|

(10p, coatng/ny-
eLs 0
arntng.,

]
|
:
|
|
9
JfCy

ect/CFC articlesfrep
Learnt{ng computer science con|cepts.

0

0
15 best for learnt{ng
parasparas.« Deskt: }p' 1dlll Iny-rodect 6 articles/fren |

ect[CFC articles|freod farep -1 "geeksHforgeeks pars

(
1, re you sin, Learnt\ng computer science con/eepts.

https://media.geeksforgeeks.org/wp-content/uploads/f-3-1.png

* -n option: Precede each line by its line
number in the file. It shows line number of file
with the line matched.

Example:
* S fgrep -n "learni\ng" para

parasgparas:~Desktop/cottng/ny-project/GFG articles/FrepS cat para

i, e you usin.g geeks*forgeeks s for L nl\gcomputer sclence con/cepts,

Geekstforgeeks 15 best for leamn 1\n

parasdparas: « Desktop/coding /ny-project /GFG articles/frepd forep -n “Tearni|ng’
(eeks*forge

for

odingny-pre Jard
ehstfor Lq Computer science con|cepts,

t for

ks f rgeeks 1 beq]

!
kS
;
i, fre you usin,(
f; *
prasiparas: Desktop cofingy-project GFG articles freps |

https://media.geeksforgeeks.org/wp-content/uploads/f-5-1.png

fgrep: supports only
string patterns—no
reqular expressions.

I

1 } 1“ ; i i3 & Th ‘

Department of Information technology 719

BACK UP UTILITIES

1. tar

2. gzip

3. cpio

1. tar

* The primary function of the UNIX tar
command is to create backups.

* [t is used to create a ‘tape archive’ of a
directory tree that could be backed up and
restored from a tape-based storage device.

e The term ‘tar’ also refers to the file format of
the resulting archive file.

Syntax:

 tar [function] [options] [paths]

Options:-
tar -c: Create a new archive.
tar -A: Append a tar file to another archive.
tar -r: Append a file to an archive.

tar -u: Update files in an archive if the one in
the file system is newer.

tar -d: Find the diff between an archive and
the file system.

tar -t: List the contents of an archive.
tar -x: Extract the contents of an archive.

 Examples:

* Create an archive file containing filel and
file2

S tar cvf archive.tar filel file2

* Create an archive file containing the directory
tree below dir

S tar cvf archive.tar dir

e List the contents of archive.tar
S tar tvf archive.tar

e Extract the contents of archive.tar to the
current directory

S tar xvf archive.tar

2. 8zip

* Gzip (GNU zip) is a compressing tool, which is
used to truncate the file size.

* By default original file will be replaced by the
compressed file ending with extension (.gz).

* To decompress a file you can use gunzip
command and your original file will be back.

Syntax:

gzip <filel> <file2> <file3>. ..

gunzip <filel> <file2> <file3>. ..

Example:

gzip filel.txt file2.txt
gunzip filel.txt file2.txt

AAA sssit@lavaTpoint: »/Downloads

sssit@lavaTpoint:~/Downloads$ gzip filed.txt filed.txt
sssit@lavaTpotnt:~/Downloadss
sssit@lavaTpoint:~/Downloadss (s
itp.Ext weeks., txt

sssit@lavaTpoint:~/Downloads$ qunzip filed.txt filed.txt
sssit@lavaTpotnt:~Downloadss 13

fllel.txt filed.txt jtp.txt weeks. txt
sssit@JavaTpoint:~/Downloads$ |

Compressing Multi Files Together

* |f you want to compress more than one file
together, you can use 'cat' and gzip command
with pipe command.

Syntax:

cat <file1> <file2>. . | gzip > <newFile.gz>

Example:

cat filel.bet file2.tut | gzip > final.gz

sssit@JavaTpoint: ~/Downloads

sssit@lavaTpoint:~/Downloads$ 1s
filel.txt file2.txt final.txt weeks. txt
sssit@lavaTpoint:~/Downloads$

szzit@JauaIpﬂint' [Downloads$ cat filel.txt file2.txt | qzip » final.gz
sssit@lavaTpoint:~/Downloadss 1s

filel.txt file2.txt final. txt weeks, txt
sssit@lavaTpoint:~/Downloadss

gzip -l
e The 'gzip -I' command tells about the

compression ratio or how much the original
file has compressed.

Syntax:

I

gzip -l <file1> <file2>. .

Example:

gzip -l final.gz jtp.txt.gz

OO0 sssit@JavaTpoint: ~/Downloads

sssit@JlavaTpoint:~/Downloads$S 1s
filel.txt file2.txt final.txt weeks. txt
sssit@lavaTpoint:~/DownloadsS gzip -1 final.gz jtp.txt.qz

compressed uncompressed ratio uncompressed name
61 59 27.1% final
40 19 26.3% jtp.txt
101 78 3.8% (totals)
sssit@lavaTpoint:~/Downloads$

How To Compress A Directory

e The gzip command will not be able to
compress a directory because it can only

compress a single file. To compress a directory
you have to use 'tar' command.

Syntax:

tar cf - <directory> | gzip > <directoryName:>>

OR

tar cvfz office.tar.gz office

Example:

tar cf - office | gzip > office.tar.gz

.Y Y-

sssit@JavaTpoint: ~/Downloads

sssit@lavaTpoint:~/Downloads$ tar cf - office | gzip » office.tar.gz
sssit@lavaTpoint:~/Downloadss 1s
office

sssit@lavaTpoint:~/Downloadss 1s -1
total 8
drwxrwxr-x 2 sssit sssit 4696 Jun 15 15:08 office

-rW-rw-r-- 1 sssit sssit 393 Jun 15 15:10
sssit@lavaTpoint:~/Downloads$ I

3. cpio

* cpio stands for “copy in, copy out”. It is used
for processing the archive files
like *.cpio or *.tar.

* This command can copy files to and from
archives.

 Example:-

* Copy-out Mode: Copy files named in name-
list to the archive

Syntax:

cpio -0 < hame-list > archive

* Copy-in Mode: Extract files from the archive

Syntax:

cpio -i < archive

* Copy-pass Mode: Copy files named in name-
list to destination-directory

Syntax:

cpio -p destination-directory < name-list

UNIT 2
WORKING WITH THE BOURNE SHELL

What is Shell

Shell Responsibilities

Pipes and Input Redirection.

Output Redirection.

Here Document.

The shell as A Programming Language.

She
She

She

Meta Characters
Variables.
Environment.

Control Structures.

Shell Script Examples.

Introduction

* When a Linux machine boots up, init process
is initiated first then it executes the shell
scripts in [etc/rc.d to restore the system
configuration analyzing the behaviour of a
system, and possibly modifying it.

* Writing shell scripts is not hard to learn, since
only a fairly small set of shell-specific
operations and options are to be learned.

What is a shell

e The shell is the art of UNIX that is most visible
to the user.

* |t receives and interprets the commands
entered by the user.

* To do anything in the system, we must give
the shell a command.

* |f the command requires a utility, the shell
requests that the kernel execute the utility.

 If the command requires an application
program, the shell requests that it be run.

* There are two major parts to a shell. The first
is the interpreter.

* The interpreter reads your commands and
works with the kernel to execute them.

* The second part to the shell is a programming
capability that allows you to write a shell
(command) script.

* A shell script is a file that contains shell
commands that perform a useful function. It is
also known as a shell program.

* There are 4 major types of shells are used in
UNIX today.

Bourne Shell (sh)

C Shell (csh)

Korn Shell (ksh)

Bourne Again Shell (bash)

The Bourne shell, developed by Steve
Bourne at the AT&T Labs, is the oldest.
Because it is the oldest and most primitive, it
Is not used on many systems today.

* The C shell, developed in Berkeley by Bill
Joy, received its name from the fact that its
commands were supposed to look like C
statements.

* The Korn shell, developed by David Korn, also
of the AT&t Labs, is the newest and most
powerful. Because it was developed at the
AT&T Labs, it is compatible with the Bourne
shell.

* The Bourne Again Shell, developed by Steve
Bourne at the AT&T Labs. This shell is widely
used with in the academic community.

 bash provides all the interactive features of
the C shell (csh) and the Korn shell (ksh).

Features of Bash

Bash is sh-compatible as it derived from the
original UNIX Bourne Shell.

Bash can be invoked by single-character
command line options (-3, -b, -¢, -i, -l, -r, etc.)

Bash Start-up files are the scripts that Bash reads
and executes when it starts.

Bash consists of Key bindings by which one can
set up customized editing key sequences.

Bash contains one-dimensional arrays
Bash comprised of Control Structures

* Directory Stack in Bash specifies the history of
recently-visited directories within a list.

 Example: pushd builtin is used to add the
directory to the stack, popd is to remove
directory from the stack and dirs builtin is to
display content of the directory stack.

 Bash also comprised of restricted mode for
the environment security. A shell gets
restricted if bash starts with name rbash, or
the bash --restricted, or bash -r option passed
at invocation.

Shell Responsibilities

Program Execution

Variables & File name substitution
|/O Redirection

Pipeline Hookup

Environment control

Interpreted programming Language.

Pipes

e We often need to use a series of commands to
complete a task.

 For example, if we need to see a list of users
logged into the system, we use the who
command.

* However, if we need a hard copy of the list, we
need two commands.

* First, we use who to get the list and store the
result in a file using redirection.

 We can avoid the creation of the intermediate
file by using a pipe (|).

* Pipe is an operator that temporarily saves the
output of one command in a buffer that is

being used at the same time as the input of
the next command.

lpr

Must Be
Standard Input

 The first command must be able to send its
output to standard output; the second

command must be able to read its input from
standard input.

e General command line is as follows:

e Commandl | Command2 | Command3 |
Command4

 Example: -
1. Is—l | more
2. who | lpr
3. who | more

* Pipeisan operator, not a command

Redirection

* Redirection is the process by which we specify
that a file is to be used in place of one of the

standard files.

 With input files, we call it input redirection;
with output files, we call it output redirection.

Input Redirection

 Some commands are desighed to take their
Input as a stream.

* This stream represents the standard input to a
command.

e Standard input stream has 3 sources:

1. File
2. Keyboard (default)
3. Pipe line

The input redirection operator is the less
than character (<).

An arrow pointing to a command, meaning
that the command is to get its input from the
designated file.

e Syntax:- Command < filel

 Example: - wc -l < user

.
-
L
m
=3
i
L

* |n the first case, wc knows that it is reading its
input from the file users.

* In the second case, it only knows that it is
reading its input from standard input so it
does not display file name.

Output Redirection

* When we redirect standard output, the
command’s output is copied to a file rather
than displayed on the monitor.

* There are two basic redirection operators for
standard output: > & >>.

The default redirection output is terminal.

If you want the file to contain only the output
from this execution of the command, you use one
greater than token (>).

In this case, when you redirect the output to a file
that doesn’t exist, UNIX creates it and writes the
output.

Eg: S who >sample

nome@virtua
Vrtia

[34

Box:~§ 15 -al > listings
Box:~§ cat L1stings

ArWxr-xr-x 26 nome nome 4696 2012-09-19 10:42 .

ATWXT =X+ X
T T-T -

j
|

00T

10M€

00t 409 X

e 0 2

12-09-01 19:43 ..
12-09-10 09:25

25 a0

* On the other hand, if you want to append the
output to the file, the redirection token is two
greater than characters (>>).

* Eg: S cat file2 >> filel

nome@VirtualBox:~5 cat sample
Hang on for the best Linux Lessons.
heme@VirtualBox:~$ echo Thanks for reading >> sample

nome@VirtualBox:~$ cat sample
Hang on for the best Linux Lessons.
Thanks for reading

Disadvantages of /O Redirection

Creation of temporary files.
Memory wastage.

Process time becomes slow

Error Redirection

e Command '2>' redirects the error of an
output.

* |t helps us you to keep our display less messy
by redirecting error messages.

7 sssit@JavaTpoint: ~

sssit@JavaTpotnt:~§ echo nyil

nyil

sssit@JavaTpoint:~§ echo nyil 2> [aev/null
nyil

point:~5 zcho nyii 2> [dev/null
01Nt~

oint:~§ zcho hytl

No command 'zcho' found, did you mean:

Conmand 'echo’ from package 'coreutils' (main)
zcho: command not found

sssit@lavaTpoint:~§ I

Here Document (<<)

* When we want to include the text in the script
itself rather than read it from a file.

* This is done with the here document operator
(<<).

sssit@JavaTpoint: ~

sssit@lavaTpoint:~S cat <<EOF> file.txt

sssit@lavaTpoint:~§ cat file.txt
a

b

sssit@lavaTpoint:~§ cat <<last> file.txt

sssit@lavaTpoint:~S$ cat file.txt
1

2

sssit@lavaTpoint:~$ I

Shell as a Programming Language

* Group of commands stored in a file is
called shell script or shell program.

 Shell scripts are slower than compiled
programs, but speed is not a constraint with
certain jobs.

* Shell scripts are not recommended for
number crunching.

 System administrator tasks are often best
handled by shell scripts.

e The activities of the shell are not restricted to
command interpretation alone.

* The shell has a whole set of internal
commands that can be strung together as a

language — with its own variables, conditionals
and loops

Shell meta characters

There are some special characters that are
recognized by the shell.

File substitution.

/O Redirection.
Quoting.

Process Execution
Positional parameters
Special parameters

* File substitution.

1. “*’- Thisis a ‘wildcard’, it matches any string
of zero or more characters, except a leading

()

Example: - |s *.txt

This will list all the files in the current
directory that end with a .txt

2. ?’- This will match any single character.
Example: - Is file?.txt

This will find the files such as filel.txt,
file2.txt etc.

* |/O Redirection

1. > - to redirect standard output to a file.

2. < - to take input from standard input
devices.

3. << -to give input from the terminal.

4. >> - to redirect output and append a file
which contain data.

* Process Execution

1. ;- Itis used to execute more than one
command.

Example: - S date ; cat filel

2. () - Itis used to grouping more than one
command.

Example: - #(date;cat file) ; Is
3. & -to execute commands in background mode
Example:-Sls &

4. && - If we pass two commands for this if
first command is successfully executed then
only it will execute the second command.

Example: - S Is file && echo file found

5. || - it will executes second command if first
command fails.

Example: - S Is file | | echo not found

* Quoting:

1. \ (back slash): it negates the special property
of the single character followed it.

Example: - echo *

It neglects the properties of * and displays
the * as output

2. ‘Y : Negates the special properties of all
enclosed characters

Example: -
S x=hello
Secho‘<>Sx ? &

The outputis:<>5Sx? &.

3. ““: Negates the special properties of all
enclosed characters except S, °, \

Example: -
S x=hello
Secho “<>Sx ?&“

The outputis : <> hello ? &.

* Positional parameters: These are used to pass
the parameter for shell script programs.

. S0 - name of the command or script name.
. $* or S@ - gives list of arguments.
. St - gives number of arguments.

B W N =

. $1,52,... - first argument and second
argument respectively.

Shell variables

A variable is a location in memory where
values can be stored.

e Each shell allows us to create, store, and
access values in variables.

e Each shell variable must have a name.

e The name of a variable must start with an
alphabetic or underscore (_) character.

* [t then can be followed by zero or more
alphanumeric or underscore characters.

e There are two broad classifications of
variables: user-defined and predefined.

User-defined variables:

User defined variables are not separately
defined in UNIX.

The first reference to a variable establishes it.

The syntax for storing values in variables is the
same for the Korn and Bash shells, but it is
different for the C Shell.

* Eg: Sx=10
S echo Sx
Output : 10.

e Sx=UNIX
S y=5X
S echo Sy
Output : UNIX.

* For removing variables which we are defined
syntax is

e S unset variablename

Predefined variables:

Predefined variables are used to configure a
user’s shell environment.

Predefined variables can be divided into two
categories:

shell variables and environmental variables.

e The shell variables are used to customize the
shell itself.

e The environmental variables control the user

environment and can be exported to sub
shells.

* Sset is used to display all predefined variables
available in shell.

e Shell Commands:-

* read: Read values for variables; white space
separated words

* Eg: Sread name
Paul
S echo Sname
Output: Paul

» set: Display the values of all shell/system
variables or predefined values and set is also
used to assign values to the positional
parameters.

Eg: S set "date’
S echo S@ or echo $*
Output: Thu Sep 8 18:08:40 EDT 2011

e Secho $1
Output: Thu

° S shift 1 //this command is used for shifting to next field
S echo S1
Output: Sep

* Eg:Sset ‘cat f1°
* Secho S#
e SechoS2

e #: Used for comments in Shell Programming

e printf: printf command is used to print the
code formats just like in your C

 Example:
printf "sum is : %d" 100
Output : 100

expr: expr performs four basic arithmetic
operations and the modulus function. It
handles only integers, decimal portions are
simple truncated or ignored.

Sx=3 y=5
Sexpr3+5
output: 8

* Sexpr Sx + Sy
* output: 8

e Sz="expr Sx + Sy ; echo Sz
* output: 8

e Sx="expr Sx +1°
* Secho Sx
* output: 4

The Environment

* An important UNIX concept is the
environment, which is defined by
environment variables.

e These variables control the behavior of the
system.

* Some are set by the system, others by you, yet
others by the shell, or any program that loads
another program.

* Senv command displays only environment
variables.

Variable Significance

HOME home directory

PATH Search path for commands
USER login name

 OGNAME as above

TERM Terminal type

SHELL Users login shell

Control Structures

e Conditional Control Structures:
1. if
if-else,

W N

. elif,

>

Cdse

if
e if: if command is executed if it test condition is

true
* Syntax :

if command is successful

then
Command

fi

if-else

e if-else executes an action if the exit status of its
test command is true; if false, then
the else action is executed.

* Syntax:

if command is successful
then

command
else

command

fi

elif

* elif allows you to nest if structures, enabling
selection among several alternatives; at the
first true if structure, its commands are
executed and control leaves the
entire elif structure.

* Syntax:

if command is successful

then
command

elif command is successful

then
command

else
command

fi

Using test or [] to Evaluate Expressions:

The if conditional can’t handle relational tests
directly, but only with assistance of
the test statement.

test uses certain operators to evaluate the
condition on its right and returns an exit
status, which is used by if for making
decisions.

test works in 3 ways:

e Compares two numbers (like test Sx —gt Sy or |
Sx —gt Sy]).

 Compares two strings or a single one for a null
value (like test $x = Sy).

* Checks a file’s attributes (like test —f Sfile).

Numerical comparison operators used
with test:

Operator Meaning

-eq Equal to

-ne Not equal to

-gt Greater than

-ge Greater than or equal to
-It Less than

-le Less than or equal to

String tests with test:

Test

sl =s2
sl !=s2
-n stg
-Z stg
stg

sl ==5s2
only)

True if

String s1 =s2

String sl is not equal to s2

String stg is not a null string

String stg is a null string
String stg is assighed and not null

String s1 = s2 (Korn and Bash

File Attribute Testing with test:

Test

-f file

-r file
-w file
-x file
-d file
-s file
-e file
-L file
f1-ntf2
f1 -ot f2
f1 -ef f2

True If File
file exists and is a regular file
file exists and is a readable
file exists and is a writable
file exists and is executable
file exists and is a directory
file exists and has a size greater than zero
file exists (korn & bash only)
file exists and is a symbolic link (korn & bash only)
f1 is newer than f2 (korn & bash only)
f1 is older than f2 (korn & bash only)
f1is linked to f2 (korn & bash only)

 Eg:

if [-e file]
then

echo “File exists”
fi

case

* case matches the string value to any of several
patterns. If a pattern is matched, its
associated commands are executed.

* Syntax: -

* case expression in
pattern 1) command 1;;

pattern 2) command 2;;
*) command;;
esac

echo -e “Menu \n 1. List of files \n 2. Todays Date
\n 3. Users \n 4. Exit \n

Enter your choice: ”

read choice
case S choice in
1) s;;

2) date;;

3) who;;

4) exit;;

*) echo “Invalid Option”
esac

Loop Control Structures

e while,
* For
e until

While

* while executes an action as long as its test
command is true.

Syntax:

while condition is true

do
command
done

 Eg:
while [Sx -eq Sy]
do
echo Sx
done

For in

* for-in is designed for use with lists of values;
the variable operand is consecutively assigned
the values in the list.

* Syntax:
for variable in list
do

command
done

 Eg:
foriin123
do
echo Si

done

Output:1 2 3

Until

* until executes an action as long as its test
command is false.

Syntax:
until command
do

command
done

 Eg:

until [Sx -eq Sy]
do

echo Sx
done

* break: break is designed for breaking the looping
statements

 Eg:
foriin12345
do
if[Si-eq3];
then

break;

fi
echo Si
done
Output: 12

* continue: continue is designed to continue the
loop at specific condition

Eg:
foriin12345
do
if[Si—eq3];
then

continue;
fi
echo Si
done
Output: 1245

Shell Script Example

echo PROGRAM TO FIND BIGGEST OF 3
NUMBERS

echo Enter 3 numbers
read a
read b

read C

if [Sa-ge Sb] && [Sa-ge Sc]
then

echo Sa is big

elif [Sb -ge Sc]

then

echo Sb is big

else

echo Scis big

fi

