
UNIT 3
UNIX FILE STRUCTURE

• The UNIX file system is a hierarchical
arrangement of directories and files.

• Everything starts in the directory called root,
whose name is the single character /.

DIRECTORIES

• A directory is a file that contains directory
entries.

• The attributes of a file are such things as the
type of file (regular file, directory), the size of
the file, the owner of the file, permissions for
the file (whether other users may access this
file), and when the file was last modified.

• The stat and fstat functions return a structure
of information containing all the attributes of
a file.

• Filename: -The names in a directory are called
filenames.

• The only two characters that cannot appear in
a filename are the slash character (/) and the
null character.

• The slash separates the filenames that form a
pathname (described next) and the null
character terminates a pathname.

• Pathname: -A sequence of one or more
filenames separated by slashes and optionally
starting with a slash, forms a pathname.

• A pathname that begins with a slash is called
an absolute pathname; otherwise, it’s called a
relative pathname.

• Working Directory: - Every process has a
working directory, sometimes called the
current working directory.

• A process can change its working directory
with the chdir function.

• Home Directory: - When we log in, the
working directory is set to our home directory.
Our home directory is obtained from our entry
in the password file.

FILES AND DEVICES

• Files are stored on devices such as Hard Disks
and Floppy Disks.

• Operating System defines a File System on
Devices which is usually Hierarchical file
system including UNIX.

• FILE SYSTEM- A Group of files and its relevant
information forms File System and is stored on
Hard Disk.

• On a Hard Disk, a Unix File system is stored in
terms of blocks where each block is equal to
512 bytes.

• The Block size can be increased up to 2048
bytes.

1. Boot block

2. Super block

3. I nodes

4. Data blocks.

• Boot Block: - A boot block located in the first
few sectors of a file system. The boot block
contains the initial bootstrap program used to
load the operating system.

• Super Block: - A super block describes the
state of the file system: the total size of the
partition, the block size, pointers to a list of
free blocks, the inode number of the root
directory, magic number, etc.

• I – nodes: - There is a one to one mapping of
files to inodes and vice versa.

• Thus, while users think of files in terms of file
names, Unix thinks of files in terms of inodes.

• Data blocks: - Data blocks containing the
actual contents of files

SYSTEM CALLS

• In computing, a system call is the
programmatic way in which a computer
program requests a service from the kernel of
the operating system it is executed on.

• A system call is a way for programs to interact
with the operating system.

• Types of System Calls: -

• There are 5 different categories of system calls

• Process control: end, abort, create, terminate,
allocate and free memory.

• File management: create, open, close, delete,
read file etc.

• Device management

• Information maintenance

• Communication

• File structure related system calls

• These calls return a file descriptor that
identifies the I/O channel.

• creat()

• open()

• close()

• read()

• write()

• lseek()

• dup()

• link()

• unlink()

• stat()

• fstat()

• access()

• chmod()

• chown()

• umask()

• ioctl()

LIBRARY FUNCTIONS

• For calculating string length, there exists a
standard function like strlen(), for opening a
file, there exists functions like open() and
fopen().

• We call these functions as standard functions
as any application can use them.

• These standard functions can be classified into
two major categories:

• Library function calls.

• System function calls.

• Library functions Vs System calls: -

• The functions which are a part of standard C
library are known as Library functions.

• For example the standard string manipulation
functions like strcmp(), strlen() etc are all
library functions.

• The functions which change the execution
mode of the program from user mode to
kernel mode are known as system calls.

• These calls are required in case some services
are required by the program from kernel.

• For example, if we want to change the date
and time of the system or if we want to create
a network socket then these services can only
be provided by kernel and hence these cases
require system calls.

• For example, socket() is a system call.

• Types of library functions: -

• Library functions can be of two types:

• Functions which do not call any system call.

• Functions that make a system call.

• There are library functions that do not make
any system call.

• For example, the string manipulation
functions like strlen() etc fall under this
category.

• Also, there are library functions that further
make system calls, for example the fopen()
function which a standard library function but
internally uses the open() system call.

LOW LEVEL FILE ACCESS

• Provides direct access to files and devices.

• Is complex (Buffer management is to done by
the programmer)

• When using I/O functions, low-level I/O is
faster as compared to the high-level I/O.

• Uses a “file descriptor” to track the status of
the file.

• Low-level I/O functions are used for:

• Accessing files and devices directly.

• Reading binary files in large chunks.

• Performing I/O operations quickly and
efficiently.

• The low-level I/O system in C provides
functions that can be used to access files and
devices.

– Open()

– Close()

– Read()

– Write()

open()

• Used to Open the file for reading, writing or
both.

• Parameters: -

• Path: - path to file which you want to use.

• Use absolute path begin with “/”, when you
are not work in same directory of file.

• Use relative path which is only file name with
extension, when you are work in same
directory of file.

• Flags: - How you like to use

• O_RDONLY: read only

• O_WRONLY: write only

• O_RDWR: read and write

• O_CREAT: create file if it doesn’t exist

• O_EXCL: prevent creation if it already exists

creat()

• Used to Create a new empty file.

Parameter: -

• filename: - name of the file which you want to
create

• mode: - indicates permissions of new file.

• Returns: -

• return first unused file descriptor (generally 3
when first creat use in process beacuse 0, 1, 2
fd are reserved).

• return -1 when error

read()

• From the file indicated by the file descriptor
fd, the read() function reads cnt bytes of input
into the memory area indicated by buf. A
successful read() updates the access time for
the file.

Parameters
fd: file descriptor
buf: buffer to read data from
cnt: length of buffer

File descriptors

• To kernel all open files are referred to by file
descriptors.

• A file descriptor is a non negative integer.

• When we open an existing or create a new
file, the kernel returns a file descriptor to a
process.

• Each UNIX process has 20 file descriptors and
it disposal, numbered 0 through 19 but it was
extended to 63 by many systems.

• The first three are already opened when the
process begins

• 0: the standard input

• 1: the standard output

• 2: the standard error output.

Returns: How many bytes were actually read

• return Number of bytes read on success

• return 0 on reaching end of file

• return -1 on error

• return -1 on signal interrupt

• Important points

• buf needs to point to a valid memory location
with length not smaller than the specified size
because of overflow.

• fd should be a valid file descriptor returned
from open() to perform read operation
because if fd is NULL then read should
generate error.

• cnt is the requested number of bytes read,
while the return value is the actual number of
bytes read. Also, sometimes read system call
should read less bytes than cnt.

write

• Writes cnt bytes from buf to the file or socket
associated with fd. cnt should not be greater
than INT_MAX (defined in the limits.h header
file). If cnt is zero, write() simply returns 0
without attempting any other action.

Parameters

• fd: file descriptor

• buf: buffer to write data to

• cnt: length of buffer

• Returns: How many bytes were actually
written?

• return Number of bytes written on success

• return 0 on reaching end of file

• return -1 on error

• return -1 on signal interrupt

close

• Tells the operating system you are done with a
file descriptor and Close the file which pointed
by fd.

• Parameter

• fd :file descriptor

• Return

• 0 on success.

• -1 on error.

lseek
• The UNIX system file system treats an ordinary

file as a sequence of bytes. Generally, a file is
read or written sequentially -- that is, from
beginning to the end of the file.

• Sometimes sequential reading and writing is
not appropriate. Random access I/O is
achieved by changing the value of this file
pointer using the lseek() system call.

• Syntax: -

• Description: -

• The lseek() function repositions the offset of
the open file associated with the file
descriptor fildes to the
argument offset according to the
directive whence as follows:

• Return Value: -

• Upon successful completion, lseek() returns
the resulting offset location as measured in
bytes from the beginning of the file.
Otherwise, a value of (off_t)-1 is returned
and errno is set to indicate the error.

• Notes: -

• When converting old code, substitute values
for whence with the following macros:

stat, fstat, lstat System Calls

• stat(): - stat() function is used to access the
files information such as the type of file owner
of the file, file access permissions, file size etc.

• Syntax: -

• #include<sys/types.h>

• #include<sys/stat.h>

• int stat(const char *filename, struct stat
*buff);

• Given a filename, stat() function will retrieve
the files information into a stat structure
pointed to by ‘buff’.

• fstat(): - fstat() function obtains the
information about the file that is already
open.

• Syntax: -

• #include<sys/types.h>

• #include<sys/stat.h>

• int fstat(int fd, struct stat *buff);

• fstat() retrieves information about the file
opened with file descriptor fd into the stat
structure pointed to by ‘buff’.

• lstat(): - The lstat() function is similar to the
stat() function, that is, it is also used to access
the information about a named file.

Syntax: -

• #include<sys/types.h>

• #include<sys/stat.h>

• int lstat(const char *filename, struct stat
*buff);

• The lstat() retrieves the information about the
filename into a stat structure pointed to by
buff.

• lstat() is identical to stat(), except that
if path is a symbolic link, then the link itself is
stat-ed, not the file that it refers to.

• Returns ‘0’ on success and ‘-1’ on error.

ioctl()

• The ioctl() function manipulates the
underlying device parameters of special files.

• In particular, many operating characteristics of
character special files (e.g. terminals) may be
controlled with ioctl() requests.

• Syntax: -

• #include <sys/ioctl.h>

• int ioctl(int d, int request, ...);

• Description: -

• The argument d must be an open file
descriptor.

• The second argument is a device-dependent
request code.

• The third argument is an untyped pointer to
memory. It’s traditionally char *argp (from the
days before void * was valid C)

dup and dup2 system calls

• dup(): - The dup() system call creates a copy of
a file descriptor.

• It uses the lowest-numbered unused
descriptor for the new descriptor.

• If the copy is successfully created, then the
original and copy file descriptors may be used
interchangeably.

• They both refer to the same open file
description and thus share file offset and file
status flags.

• Syntax: -

• dup2(): - The dup2() system call is similar to
dup() but the basic difference between them
is that instead of using the lowest-numbered
unused file descriptor, it uses the descriptor
number specified by the user.

• Syntax: -

link() system call

• link() creates a new link (also known as a hard
link) to an existing file.

• Syntax: -

#include <unistd.h>

int link(const char *oldpath, const char
*newpath);

• Description: -

• If newpath exists it will not be overwritten.
This new name may be used exactly as the old
one for any operation; both names refer to
the same file (and so have the same
permissions and ownership) and it is
impossible to tell which name was the
`original’.

• Return Value: - On success, zero is returned.
On error, -1 is returned, and errno is set
appropriately.

• Note: - Hard links, as created by link(), cannot
span file systems. Use symlink() if this is
required.

symlink()

• Syntax: -

• #include <unistd.h>

• int symlink(const char *oldpath, const char
*newpath);

• Description: -

• symlink() creates a symbolic link
named newpath which contains the
string oldpath.

unlink() system call

• delete a name and possibly the file it refers to

• Syntax: -

#include <unistd.h>

int unlink(const char *pathname);

Description

• unlink() deletes a name from the file system.

• If that name was the last link to a file and no
processes have the file open the file is deleted
and the space it was using is made available
for reuse.

Return Value

• On success, zero is returned. On error, -1 is
returned, and errno is set appropriately.

UNIT 4
UNIX PROCESS

• A process, in simple terms, is an instance of a
running program.

• If, for example, three people are running the
same program simultaneously, there are three
processes there, not just one.

• The operating system tracks processes
through a five-digit ID number known as
the PID(Process Identification Number) or
the process ID.

• Each process in the system has a unique PID.

• Unix is a timesharing system, which means
that the processes take turns running. Each
turn is a called a time slice.

• On most systems this is set at much less than
one second.

• The reason this turns-taking approach is used
is fairness. We don’t want a 2-second job to
have to wait for a 5-hour job to finish

What is process

• A process is a program in execution in
memory or in other words, an instance of a
program in memory.

• Any program executed creates a process.

• A program can be a command, a shell script,
or any binary executable or any application.

• However, not all commands end up in creating
process, there are some exceptions.

• Similar to how a file created has properties
associated with it, a process also has lots of
properties associated to it.

Process attributes:

• A process has some properties associated to
it:

• PID

• PPID

• TTY

• UID

PID: - Process-Id.

• Every process created in Unix/Linux has an
identification number associated to it which is
called the process-id.

• The PID is unique for a process at any given
point of time. However, it gets recycled.

PPID : Parent Process Id:

• Every process has to be created by some other
process.

• The process which creates a process is the
parent process, and the process being created
is the child process.

• The PID of the parent process is called the
parent process id(PPID).

TTY:

• Terminal to which the process is associated to.
Every command is run from a terminal which
is associated to the process.

• However, not all processes are associated to a
terminal. There are some processes which do
not belong to any terminal. These are called
daemons.

UID: User Id-

• The user to whom the process belongs to. And
the user who is the owner of the process can
only kill the process(Of course, root user can
kill any process).

• When a process tries to access files, the
accessibility depends on the permissions the
process owner has on those files.

File Descriptors:

• File descriptors related to the process: input,
output and error file descriptors.

• List the processes:

• $ ps

PID TTY TIME CMD

1315012 pts/1 0:00 -ksh

2490430 pts/1 0:00 ps

• ps is the Unix command which lists the active
processes and its status.

• The ps command output shows 4 things:

PID : The unique id of the process
TTY: The terminal from which the process or
command is executed.
TIME: The amount of CPU time the process
has taken
CMD: The command which is executed.

• 2 processes are listed in the above case:

1. -ksh : The login shell, which we are working
on, is also a process which is currently
running.

2. ps : The ps command which we executed to
get the list also creates a process.

• Parent & Child Process:

• Every process in Unix has to be created by some
other process.

• Hence, the ps command is also created by some
other process.

• The 'ps' command is being run from the login
shell, ksh.

• The ksh shell is a process running in the memory
right from the moment the user logged in.

• So, for all the commands triggered from the
login shell, the login shell will be the parent
process and the process created for the
command executed will be the child process.

• In the same lines, the 'ksh' is the parent
process for the child process 'ps'.

• $ ps -o pid,ppid,args

PID PPID COMMAND

2666744 3317840 ps -o pid,ppid,args

3317840 1 -ksh

The PID of the ksh is same as the PPID of the ps
command which means the ksh process is the
parent of the ps command. The '-o' option of
the ps command allows the user to specify
only the fields which he needs to display.

Init Process:

• If all processes of the user are created by the
login shell, who created the process for the
login shell?

• In other words, which is the parent process of
the login shell?

• When the Unix system boots, the first process
to be created is the init process.

• This init process will have the PID as 1 and
PPID as 0.

• All the other processes are created by the init
process and gets branched from there on.

• Note in the above command, the process of
the login shell has the PPID 1 which is the PID
of the init process.

PROCESS STRUCTURE

• The kernel has a process table where it stores
the state of the process and other information
about the process.

• The information of the entry and the u-area of
the process combined is the context of the
process.

PROCESS STATES
• Every process in the system can be in one of six states.
• The six possible states are as follows:

1) Running, which means that the process is currently
using the CPU.

2) Runnable, which means that the process can make
use of the CPU as soon as it becomes available.

3) Sleeping, which means that the process is waiting
for an event to occur.
For example, if a process executes a “read()” system
call, it sleeps until the I/O request completes.

4) Suspended, which means that the process
has been “frozen” by a signal such as
SIGSTOP.

It will resume only when sent a SIGCONT
signal.

5) Idle, which means that the process is being
created by a “fork() system call and is not yet
runnable.

6) Zombified, which means that the process has
terminated but has not yet returned its exit
code to its parent.

• A process remains a zombie until its parent
accepts its return code using the “wait()”
system call.

PROCESS COMPOSITION
• Every process is composed of several different

pieces:
• a code area, which contains the executable(text)

portion of a process
• a data area, which is used by a process to

contain static data
• a stack area, which is used by a process to store

temporary data
• a user area, which holds housekeeping

information about a process
• page tables, which are used by the memory

management system

• User Area

• Every process in the system has some
associated “housekeeping” information that is
used by the kernel for process management.

• This information is stored in a data structure
called a user area. Every process has its own
user area.

• User areas are created in the kernel’s data
region and are only accessible by the kernel;
user processes may not access their user
areas.

The Process Table

• There is a single kernel data structure of fixed
size called the process table that contains one
entry for every process in the system.

• The process table is created in the kernel’s
data region and is accessible only by the
kernel.

• Each entry contains the following information
about each process:

• its process ID(PID) and parent process
ID(PPID)

• its real and effective user ID(UID) and group
ID(GID)

• its state (running, runnable, sleeping,
suspended, idle, or zombified)

• the location of its code, data, stack, and user
areas

• a list of all pending signals

UNIT 5
SIGNALS

Program must sometimes deal with unexpected or
unpredictable events, such as :
 a floating point error
 a power failure
 an alarm clock “ring”
 the death of a child process
 a termination request from a user(

i.e.,Control-C)
 a suspend request from a user (i.e., Control-Z

)

• These kind of events are sometimes called
interrupts, as they must interrupt the regular
flow of a program in order to be processed.

• When UNIX recognizes that such an event has
occurred, it sends the corresponding process a
signal.

• There is a unique, numbered signal for each
possible event.

For example:-

• if a process causes a floating point error, the
kernel sends the offending process signal
number 8:

• Any process can send any other process a
signal, as long as it has permission to do so.

• A programmer may arrange for a particular
signal to be ignored or to be processed by a
special piece of code called a signal handler.

• The process that receives the signal

1) suspends its current flow of control,

2) executes the signal handler,

3) and then resumes the original flow of
control when the signal handler finishes

• Signals are defined in
“/usr/include/sys/signal.h”.

or #include<signal.h>

• The default handler usually performs one of
the following actions:

 terminate the process and generate a core file (dump)

 terminate the process without generating a core image file
(quit)

 ignore and discard the signal (ignore)

 suspend the process (suspend)

 resume the process

• Sending Signals

• There are several methods of delivering
signals to a program or script. One of the most
common is for a user to type CONTROL-C or
the INTERRUPT key while a script is executing.

• When you press the Ctrl+C key, a SIGINT is
sent to the script and as per defined default
action script terminates.

• The other common method for delivering
signals is to use the kill command, the syntax
of which is as follows −

• $ kill -signal pid

• Here signal is either the number or name of
the signal to deliver and pid is the process ID
that the signal should be sent to.

• For Example −

• $ kill -1 1001

• The above command sends the HUP or hang-
up signal to the program that is running
with process ID 1001.

• To send a kill signal to the same process, use
the following command

• $ kill -9 1001

• This kills the process running with process ID
1001.

LIST OF SIGNALS

• - Here’s a list of the System V predefined
signals, along with their respective macro
definitions, numerical values, and default
actions, as well as a brief description of each:

• Unreliable Signals

Def: Unreliable Signals..

• Signals could get lost without notice by

process

Why?

• The action for a signal was reset to its

default each time the signal occurred.

• The process could only ignore signals,

instead of turning off the signals

Interrupted System Calls

• In earlier UNIX systems, if a process caught a
signal while the process was blocked in a
"slow" system call, the system call was
interrupted.

• The system call returned an error
and errno was set to EINTR.

• This was done under the assumption that
since a signal occurred and the process caught
it, there is a good chance that something has
happened that should wake up the blocked
system call.

Slow system calls

• The system calls are divided into two
categories: the "slow" system calls and all the
others.

• The slow system calls are those that can block
forever:

• The system calls that were automatically
restarted are:

– ioctl

– read

– readv

– write

– writev

• Functions that are always interrupted when a
signal is caught.

– wait

– waitpid

kill and raise Functions

• The kill function sends a signal to a process or
a group of processes.

• The raise function allows a process to send a
signal to itself.

• “kill()” sends the signal with value sigCode to
the process with PID pid.

• Conditions on pid:

1. pid > 0 : signal sent to the process with

UID pid

2. pid == 0: signal sent to “all” processes

with the same gid of the sender

(excluding proc 0, 1, 2)

3. pid < 0: signal sent to “all” processes

with process gid == |pid|

• raise() function can only send a signal to the
program that contains it.

• raise() cannot send a signal to other
processes.

• To send a signal to other processes, the
system call kill() should be used.

alarm and pause Functions

• The alarm function sets a timer that will expire
at a specified time in the future.

• When the timer expires, the SIGALRM signal is
generated.

• If we ignore or don’t catch this signal, its
default action is to terminate the process.

• Seconds specifies expiration delay.

• alarm(0) cancels the alarm if not yet
expired. Returns number of seconds left.

#include <stdio.h>

main()

{

alarm(3); /* Schedule an alarm signal in three
seconds */

printf(“Looping forever… \n”);

while(1)

printf(“This line should never be executed
\n”);

}

• The pause function suspends the calling
process until a signal is caught.

abort Function

• The abort function causes abnormal program
termination.

• The abort function sends the SIGABRT signal
to the caller. Processes should not ignore this
signal.

#include <stdio.h>
#include <stdlib.h>
int main ()
{

FILE *fp;
printf("Going to open nofile.txt\n");
fp = fopen("nofile.txt","r");
if(fp == NULL)
{

printf("Going to abort the program\n");
abort();

}
printf("Going to close nofile.txt\n");
fclose(fp);
return(0);

}

Sleep function

• sleep for the specified number of seconds.

SLEEP COMMAND SUPPORTS BELOW UNITS

• s for seconds; this is a default one if you don’t
specify any letter after the integer.

• m for minutes.

• h for hours.

• d for days.

• Delay execution of a command by one hour or
even for a day.

sleep 1h

sleep 1d

BASIC UTILITIES

1. who

2. date

3. tty

4. stty

5. bc

6. cal

7. man

8. lpr

Department of Information technology 142

BASIC UTILITIES

9. passwd

10. clear

11. uname

12. echo

13. script

Department of Information technology 143

1. who
• The who command displays all users currently

logged into the system.

• Example : $who

Option:-

• -u:- Just knowing that someone is logged in is
not sufficient, however. You also want to know
that he or she is active (or) not. This is know
as idle time.

• Example:- $ who -u

Department of Information technology 144

• -uH:- Another helpful option, especially for
new UNIX users, is the header.

• Example:- $ who –uH

who am i
• If you key who am i as the command, the

system return your user id.

• Example:- $who am i

Department of Information technology 145

Department of Information technology 146

2. Date

• date command is used to display the system
date and time.

• Date command is also used to set date and
time, but only by a system administrator.

• Syntax:-

date *OPTION+ … *+FORMAT+

Department of Information technology 147

Options with Examples:-

• date (no option):- With no options, the date
command displays the current date and time.

Example:- $ date

• -u:- Displays the time in GMT (Greenwich
Mean Time) / UTC(Coordinated Universal
Time).

• Example:- $ date –u

Department of Information technology 148

Department of Information technology 149

List of Format specifies used with
date command:

Department of Information technology 150

Department of Information technology 151

Syntax:-

• $date “+Today’s date is : %D . The time is : %T”

• For the date command, the format is a plus
sign (+) followed by the text and a series of
format codes all enclosed in double quote
marks.

• Each code is preceded by a percentage sign
(%) that identifies it as a code.

Output:-

• Today’s date is :06/12/19.The time is: 08:29:30

Department of Information technology 152

3. tty

• In UNIX, everything is a file. Even any
hardware device connected to the system is
represented as a special file. So that a
terminal is also represented as a file.

• tty is short for teletype, but it’s more
popularly known as terminal.

• The tty command basically prints the filename
of the terminal connected to standard input.

Department of Information technology 153

Example:-

• $tty

/dev/ttyq0

• The output shows that the name of the
terminal is /dev/ttyq0 (or) more simply, ttyq0.

• In UNIX, the name of a terminal usually has
the prefix tty.

Department of Information technology 154

4. Set Terminal (stty) Command

• The set terminal command sets or unsets
selected terminal input/output options.

• When the terminal is not responding properly,
the set terminal command can be used to
reconfigure it.

Syntax:- $ stty

Department of Information technology 155

• If we use the stty without any options or
arguments, it shows the current common
setting for your terminal.

• The set terminal command can be used with
two options (-a and -g).

• With the –a option, it displays the current
terminal option settings.

Department of Information technology 156

• With the –g option, it displays selected
settings in a format that can be used as an
argument to another set terminal command.

Department of Information technology 157

5. bc command

• The bc command is one of the most
interesting commands in UNIX.

• It turns UNIX into a calculator.

• Syntax :- echo “134+18” |bc

Department of Information technology 158

6. Calendar (cal) command

• The calendar command, cal, displays the
calendar for a specified month or for a year.

• It is an example of a command that has no
options but uses arguments.

• Its general format is

cal option [[month] year]

Department of Information technology 159

Department of Information technology 160

Department of Information technology 161

7. man command

• One of the most important UNIX commands is
man.

• The man command displays online
documentation. When you can’t remember
exactly what the options are for a command,
you can quickly check the online manual and
look up the answer.

Department of Information technology 162

$ man ls

Department of Information technology 163

• The man command with an option of –k and it
will display information, including commands,
about the topic.

$ man –k sort

• If you want to know what UNIX sort utilities
are available, you can enter the command and
get a list of sort utilities.

Department of Information technology 164

8. lpr command

• The most common print utility is line printer
(lpr).

• The line printer utility prints the contents of
the specified files to either the default printer
or to a specified printer.

• Multiple files can be printed with the same
command.

Department of Information technology 165

Example:-

• $ lpr file1

• The command prints one file to the standard
printer.

• $ lpr file1 file2 file3

• The command prints three files to the
standard printer.

Department of Information technology 166

• To direct the output to a specified printer, we
use the –P option. The name of the printer
immediately follows the option with no
spaces.

• $ lpr –Plp0 file1 file2 file3

• The command prints three files to printer lp0.

Department of Information technology 167

9. Change Password (passwd)

• The password command, passwd, is used to
change your password.

• It has no options or attributes but rather does
its work through a dialog of questions and
answers.

• $ passwd

Department of Information technology 168

Department of Information technology 169

10. Clear Screen (clear)

• The clear command clears the screen and puts
the cursor at the top.

• It is available in most systems.

Syntax:-

• $ clear

Department of Information technology 170

11. System Name (uname)

• Each UNIX system stores data, such as its
name about itself. To see these data, we use
the uname command.

Syntax: -

• $uname

Department of Information technology 171

• We can display all of the data using the all
option (-a)

• Syntax:

• $uname -a

• Output:

Department of Information technology 172

• We can specify only the name (-n).

Syntax:

$uname -n

Output:

Department of Information technology 173

• -s option: It prints the kernel name.

Syntax:

• $uname -s

• Output:

Department of Information technology 174

• -r option: It prints the kernel release date.

Syntax:

$uname –r

Output:

Department of Information technology 175

• Options can be combines, for example, to
display the operating system and its release,
use –sr

Department of Information technology 176

12. echo
• echo command is used to display line of

text/string that are passed as an argument .

• $echo Welcome to UNIX

Department of Information technology 177

13. Script command

• The script command can be used to record an
interactive session.

• When you want to start recording, key the
command.

• To stop the recording, key exit.

• You may have to use ctrl + d to log out after
the exit command.

Department of Information technology 178

Example:-

• $script myfilename

• To append to the file rather than erase it, we
use the append option (-a)

Example:-

• $script –a filename

Department of Information technology 179

Department of Information technology 180

FILE HANDLING SYSTEM CALLS
USING STANDARD I/O

• File is a collection of numbers, symbols and
text placed onto the disk.

• Thus, files allow us to store information
permanently on to the disk and then access
then when needed.

File types:-

• There are two types of files.

• Sequential file

• Random access file.

• Opening of file: -

Syntax:-

• FILE *fp;

• fp=fopen(“data.txt”,”r”);

• It is necessary to write FILE in the uppercase.
The function fopen() will open a file “data.txt”
in read mode.

• Reading a file:-

• Once the file is opened using fopen(), its
contents are loaded into the memory(partly or
wholly).

• The pointer points to the very first character
of the file.

• The fgetc() is used to read the contents of the
file.

• The syntax for fgetc() is
ch=fgetc(fp);

• where fgetc() reads the character from current
pointer position and advances the pointer
position so that the next character is pointed.

• Text Modes:-

• r ---> opens text file for reading only.

• w ---> opens a text file for writing only.

• a ---> opens text file for appending only.

• r+ ---> opens text file for reading and writing.

• w+ ---> opens text file for reading and writing.

• a+ ---> opens a text file for read or write

• w(write):- This mode opens a new file on the
disk for writing. If the file already exists, it will
be overwritten without confirmation.

Syntax:-

fp=fopen(“data.txt”,”w”);

• Here, data.txt is the file name and “w” is the
mode.

• r(read):-This mode searches a file and if it is
found the same is loaded into the memory for
reading from the first character of the file.

• The file pointer points to the first character and
reading operation begins.

• If the file doesn’t exist, then compiler returns
NULL to the file pointer.

• Using pointer with if statement we can prompt
the user regarding failure of operation.

• Syntax:-

fp=fopen(“data.txt”,”r”);

if(fp==NULL)

{

printf(“File does not exist”);

}

(OR)

if(fp=(fopen(“data.txt”,”r”))==NULL)

{
printf(“File does not exist”);

}

• Here, data.txt is opened for reading only. If the
file does not exist the fopen() returns NULL to
file pointer ‘fp’.

• append(a):-This mode opens a pre existing file
for appending data.

• The data appending process starts at the end
of the opened file.

• The file pointer points to the last character of
the file.

• If the file doesn’t exist, then new file is
opened i.e., if the file does not exist then the
mode of “a” is same as “w”.

• Due to some or other reasons if file is not
opened in such a case NULL is returned.

• File opening may be impossible due to
insufficient space on to the disk and some
other reasons.

• Syntax:-

fp=fopen(“data.txt”,”a”);

• Here, if data.txt file already exists, it will be
opened. Otherwise a new file will be opened
with the same name.

• w+(write+read):- This mode starts for file
search operation on the disk.

• In case the file is found, its contents are
destroyed.

• If the file is not found, a new file is created.

• It returns NULL if it fails to open the file. In
this file mode new contents can be written
and there after reading operation can be
done.

Syntax:-

fp=fopen(“data.txt”,”w+”);

Here, data.txt file is open for reading and
writing operation.

• a+(append+read):- In this file operation mode
the contents of the file can be read and
records can be added at the end of file.

• A new file is created in case the concerned file
does not exist.

• Due to some or the other reasons if a file is
unable to open then NULL is returned.

• Syntax:-

• fp=fopen(“data.txt”,”a+”);

• Here, data.txt is opened and records are
added at the end of file without affecting the
previous contents.

• r+ (read + write):- This mode is used for both
reading and writing.

• We can read and write the record in the file. If
the file does not exist, the compiler returns
NULL to the file pointer.

• Syntax:-

fp=fopen(“data.txt”,”r+”);

if(fp==NULL)

printf(“\n File not found”);

• Here, data.txt is opened for the read and write
operation.

• If fopen() fails to open the file it returns NULL.

• The if statements check the value of file
pointer fp; and if it contains NULL a message is
printed and program terminates.

• Closing a file:-

• The file that is opened from the fopen()
should be closed after the work is completed
i.e., we need to close the file after reading and
writing operations are completed.

• Syntax:-

fclose(file_pointer);

• To close one or more files at a time the
function fcloseall() is used.

• Syntax:-

fcloseall();

• FILE I/O:-

• After opening the file, the next thing needed
is the way to read or write the file. These
functions are classified as:-

• Character I/O functions.

• String I/O functions.

• Formatted I/O functions.

• Block I/O functions.

Character I/O functions:-

• ‘C’ provides a set of functions for reading and
writing character by character or one byte at a
time.

• These functions are defined in the standard
library.

1. fgetc()

2. fputc()

• fgetc():- fgetc() is used to read a character
from a file.

• Syntax:-

fgetc(FILE *stream);

• fputc():- This function is used to write a single
character into a file. If an error occurs it
returns EOF.

• Syntax:-

• fputc(ch, FILE *stream);

• String I/O functions:-

• If we want to read a whole line in the file then
each time we will need to call character input
function.

– fgets()

– fputs()

• fgets():- This function reads string from a file
pointed by file pointer. It also copies the string
to a memory location referred by an array.

• Syntax:-

fgets(str, size, FILE *stream);

Here, str is a name of a character array,

size is an integer value.

• fputs():- This function is useful when we want
to write a string into the opened file.

• Syntax:-

• fputs(str,FILE *stream);

• Formatted I/O functions:-

• If the file contains data in the form of digits,
real numbers, character and strings, then
character I/O functions are not enough as the
values would be read in the form of
characters.
– fprintf()

– fscanf()

• These functions are used for formatted input
and output. These are identical to scanf() and
printf().

• fprintf():- This function is used for writing
characters, strings, integers, floats etc to the
file.

• Hence this function is called the formatted
function.

• It contains one more parameter that is file
pointer, which points the opened file.

• Syntax:-

• fprintf(fp, ”control string”, arguments list);

• Here, the parameter fp associated with a file
that has been opened for writing.

• A control string specifies the format specifiers.

• Argument list contains variables separated by
commas.

• fscanf():- This function reads character,
strings, integer, floats etc from the file pointed
by file pointer.

• This is also a formatted function.

• Syntax:-

• fscanf(fp, ”control string”, arguments list);

• Here, the parameter fp associated with a file
that has been opened for writing.

• A control string specifies the format specifiers.

• Argument list contains variables separated by
commas.

• Block I/O functions:- (Structure Read and
Write)

• Block I/O functions read/write a block. A block
can be a record, a set of records or an array or
a structure.

• These functions are also defined in standard
library.
– fread()

– fwrite()

• These two functions allow reading and writing
of block of data.

• fread():- This function is used for reading an
entire block from a given file.

• Syntax:-

• fread(&structure_variable, int size, int
num,FILE *fp);

• Here, structure_variable is the pointer or
address of block of memory (structure).

• size is the size of the structure.

• num is the number of structure variables.

• fp is the pointer to the datatype FILE.

• fwrite():- This function is used for writing an
entire structure block to a given file.

• Syntax:-

• fwrite(&structure_variable, int size, int
num,FILE *fp);

• Here, structure_variable is the pointer or
address of block of memory(structure).

• size is the size of the structure.

• num is the number of structure variables.

• fp is the pointer to the datatype FILE.

• Random access functions:-

• Sequential access files allow reading the data
from the file in sequential manner which
means that data can only be read in sequence.

• Random access files allow reading data from
any location in the file. The functions are

• fseek()

• ftell()

• rewind()

• fseek():-

fseek() is used to move the file position to a
desired location within the file.

• Syntax:-

fseek(file_ptr,offset,position);

where

• file_ptr is a pointer to the file.

• offset is a number or variable of type long

• position is an integer number.

• The offset specifies the number of positions to
be moved from the location specified by
position. The position can take one of the
following three values

• ftell():-

• ftell() takes a file pointer and returns a
number of type long, that corresponds to the
current position. This function is useful in
saving the current position of a file, which can
be used later in the program.

• Syntax:-

• n=ftell(fp);

• where n would given the relative offset of the
current position.

• rewind():-

• rewind takes a file pointer and resets the
position to the start of the file.

• Syntax:-

• rewind(fp);

• fflush()

• The C library function

int fflush(FILE *stream) flushes the output
buffer of a stream.

• Declaration: -

Following is the declaration for fflush()
function.

int fflush(FILE *stream)

• Parameters: -

stream − This is the pointer to a FILE object
that specifies a buffered stream.

• Return Value: -

• This function returns a zero value on success.
If an error occurs, EOF is returned and the
error indicator is set (i.e. feof).

Starting new process

• When you start a process (run a command),
there are two ways you can run it −

Foreground Processes

Background Processes

Foreground Processes

• By default, every process that you start runs in
the foreground.

• It gets its input from the keyboard and sends
its output to the screen.

• You can see this happen with the ls command.
If you wish to list all the files in your current
directory, you can use the following command

$ls ch*.doc

• This would display all the files, the names of
which start with ch and end with .doc −

ch01-1.doc

ch010.doc

ch02.doc

ch03-2.doc

ch04-1.doc

ch040.doc

• The process runs in the foreground, the
output is directed to my screen, and if the ls
command wants any input (which it does not),
it waits for it from the keyboard.

• While a program is running in the foreground
and is time-consuming, no other commands
can be run (start any other processes) because
the prompt would not be available until the
program finishes processing and comes out.

• Background Processes

• A background process runs without being
connected to your keyboard.

• If the background process requires any
keyboard input, it waits.

• The advantage of running a process in the
background is that you can run other
commands; you do not have to wait until it
completes to start another!

• The simplest way to start a background
process is to add an ampersand (&) at the end
of the command.

• $ls ch*.doc &

• This displays all those files the names of which
start with ch and end with .doc −

ch01-1.doc

ch010.doc

ch02.doc

ch03-2.doc

ch04-1.doc

ch040.doc

• Here, if the ls command wants any input
(which it does not), it goes into a stop state
until we move it into the foreground and give
it the data from the keyboard.

• That first line contains information about the
background process - the job number and the
process ID.

• You need to know the job number to
manipulate it between the background and
the foreground.

• [1] + Done ls ch*.doc &

• $

• The first line tells you that the ls command
background process finishes successfully. The
second is a prompt for another command.

• Listing Running Processes

• It is easy to see your own processes by
running the ps (process status) command as
follows −

• $ps

PID TTY TIME CMD

18358 ttyp3 00:00:00 sh

18361 ttyp3 00:01:31 abiword

18789 ttyp3 00:00:00 ps

• One of the most commonly used flags for ps is
the -f (f for full) option, which provides more
information

• There are other options which can be used
along with ps command

Stopping Processes

• Ending a process can be done in several
different ways.

• Often, from a console-based command,
sending a CTRL + C keystroke will exit the
command.

• This works when the process is running in the
foreground mode.

• If a process is running in the background, you
should get its Job ID using the ps command.
After that, you can use the kill command to
kill the process as follows.

• $ps -f

• $kill 6738

Terminated

• Here, the kill command terminates
the first_one process.

• If a process ignores a regular kill command,
you can use kill -9 followed by the process ID
as follows −

• $kill -9 6738Terminated

Zombie and Orphan Processes

• Normally, when a child process is killed, the
parent process is updated via a SIGCHLD
signal.

• Then the parent can do some other task or
restart a new child as needed.

• However, sometimes the parent process is
killed before its child is killed.

• In this case, the "parent of all processes,"
the init process, becomes the new PPID
(parent process ID).

• In some cases, these processes are called

orphan processes.

• When a process is killed, a ps listing may still
show the process with a Z state.

• This is a zombie process. The process is dead
and not being used.

• These processes are different from the orphan
processes.

• They have completed execution but still find
an entry in the process table.

• Daemon Processes

• Daemons are system-related background
processes that often run with the permissions
of root and services requests from other
processes.

• A daemon is a process that runs in the
background, usually waiting for something to
happen that it is capable of working with.

The top Command: -

top is a basic Unix command which is very
useful for observing the current state of your
Unix system, by default presenting you the list
of top users of your system's resources – CPU
shares and memory.

• Here is the simple syntax to run top command
and to see the statistics of CPU utilization by
different processes −

• $top

Job ID Versus Process ID

• Background and suspended processes are
usually manipulated via job number (job ID).

• This number is different from the process ID
and is used because it is shorter.

• In addition, a job can consist of multiple
processes running in a series or at the same
time, in parallel.

• Using the job ID is easier than tracking
individual processes.

• Types of Processes

• Parent and Child process

• Zombie and Orphan process

• Daemon process

Process Control

Process Identifiers

• Every process has a unique process ID, a non-
negative integer.

• As processes terminate, their IDs can be
reused.

• There are some special processes, but the
details differ from implementation to
implementation:

• Process ID 0: scheduler process (often known
as the swapper), which is part of the kernel
and is known as a system process

• Process ID 1: init process, invoked by the
kernel at the end of the bootstrap procedure.

INTER PROCESS COMMUNICATION
(IPC)

• Inter Process Communication (IPC) refers to a
mechanism, where the operating systems
allow various processes to communicate with
each other.

• This involves synchronizing their actions and
managing shared data.

• Inter Process Communication (IPC) is a
mechanism that involves communication of
one process with another process.

• This usually occurs only in one system.

• Communication can be of two types.

1. Between related processes initiating from
only one process, such as parent and child
processes.

2. Between unrelated processes, or two or
more different processes.

• Following are some important terms that we
need to know before proceeding further on
this topic.

• Pipes: - Communication between two related
processes. The mechanism is half duplex
meaning the first process communicates with
the second process. To achieve a full duplex
i.e., for the second process to communicate
with the first process another pipe is required.

• FIFO: - Communication between two unrelated
processes. FIFO is a full duplex, meaning the first
process can communicate with the second
process and vice versa at the same time.

• Message Queues: - Communication between two
or more processes with full duplex capacity. The
processes will communicate with each other by
posting a message and retrieving it out of the
queue. Once retrieved, the message is no longer
available in the queue.

• Shared Memory: - Communication between two
or more processes is achieved through a shared
piece of memory among all processes. The
shared memory needs to be protected from each
other by synchronizing access to all the
processes.

• Signals: - Signal is a mechanism to
communication between multiple processes by
way of signalling. This means a source process
will send a signal (recognized by number) and the
destination process will handle it accordingly.

• PIPES: -

• Pipe is a communication medium between
two or more related or interrelated processes.

• It can be either within one process or a
communication between the child and the
parent processes.

• Communication can also be multi-level such as
communication between the parent, the child
and the grand-child, etc.

• Communication is achieved by one process
writing into the pipe and other reading from
the pipe.

• To achieve the pipe system call, create two
files, one to write into the file and another to
read from the file.

• Syntax: -

#include<unistd.h>

int pipe(int pipedes[2]);

• This system call would create a pipe for one-
way communication i.e., it creates two
descriptors, first one is connected to read
from the pipe and other one is connected to
write into the pipe.

• Descriptor pipedes[0] is for reading and
pipedes[1] is for writing.

• Whatever is written into pipedes[1] can be
read from pipedes[0].

• This call would return zero on success and -1
in case of failure.

• #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *pathname, int flags);

int open(const char *pathname, int flags,
mode_t mode);

• The arguments passed to open system call are
pathname (relative or absolute path),

• flags mentioning the purpose of opening file
(say,

opening for read, O_RDONLY,

to write, O_WRONLY,

to read and write, O_RDWR,

to append to the existing file O_APPEND,

to create file, if not exists with O_CREAT and
so on)

• The required mode providing permissions of
read/write/execute for user or
owner/group/others. Mode can be mentioned
with symbols.

• Read – 4, Write – 2 and Execute – 1.

#include<unistd.h>

int close(int fd)

• The above system call closing already opened
file descriptor.

• This system call returns zero on success and -1
in case of error.

#include<unistd.h>

ssize_t read(int fd, void *buf, size_t count)

• The above system call is to read from the
specified file with arguments of file descriptor
fd, proper buffer with allocated memory
(either static or dynamic) and the size of
buffer.

#include<unistd.h>

ssize_t write(int fd, void *buf, size_t count)

• The above system call is to write to the
specified file with arguments of the file
descriptor fd, a proper buffer with allocated
memory (either static or dynamic) and the size
of buffer.

• Two-way Communication Using Pipes

• Pipe communication is viewed as only one-
way communication i.e., either the parent
process writes or the child process reads or
vice-versa but not both.

• However, what if both the parent and the
child need to write and read from the pipes
simultaneously, the solution is a two-way
communication using pipes.

• Two pipes are required to establish two-way
communication.

• Following are the steps to achieve two-way
communication −

• Step 1 − Create two pipes. First one is for the
parent to write and child to read, say as pipe1.
Second one is for the child to write and parent
to read, say as pipe2.

• Step 2 − Create a child process.

• Step 3 − Close unwanted ends as only one end
is needed for each communication.

• Step 4 − Close unwanted ends in the parent
process, read end of pipe1 and write end of
pipe2.

• Step 5 − Close the unwanted ends in the child
process, write end of pipe1 and read end of
pipe2.

• Step 6 − Perform the communication as
required.

• FIFOs: -

• Pipes were meant for communication
between related processes.

• Can we use pipes for unrelated process
communication, say, we want to execute client
program from one terminal and the server
program from another terminal? The answer
is No.

• Then how can we achieve unrelated processes
communication, the simple answer is Named
Pipes.

• Even though this works for related processes,
it gives no meaning to use the named pipes
for related process communication.

• We used one pipe for one-way communication
and two pipes for bi-directional
communication. Does the same condition
apply for Named Pipes.

• The answer is no, we can use single named
pipe that can be used for two-way
communication (communication between the
server and the client, plus the client and the
server at the same time) as Named Pipe
supports bi-directional communication.

• Another name for named pipe is FIFO (First-
In-First-Out). Let us see the system call
(mknod()) to create a named pipe, which is a
kind of a special file.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int mknod(const char *pathname, mode_t mode, dev_t dev);

• The pathname along with the attributes of
mode and device information. The pathname
is relative, if the directory is not specified it
would be created in the current directory.

• The mode specified is the mode of file which
specifies the file type such as the type of file
and the file mode as mentioned in the
following tables.

• The dev field is to specify device information
such as major and minor device numbers.

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mode)

• This library function creates a FIFO special file,
which is used for named pipe.

• The arguments to this function are file name
and mode.

• The file name can be either absolute path or
relative path.

• If full path name (or absolute path) is not
given, the file would be created in the current
folder of the executing process.

• The file mode information is as described in
mknod() system call.

Introduction to Unix File System

• Unix is an open Operating System.

• All data in Unix is organized into files. All files
are organized into directories.

• These directories are organized into a tree like
structure called the FILE SYSTEM.

• Files in Unix system are organized into multi
level hierarchy structure known as a directory
tree.

Department of Information technology 292

Department of Information technology 293

UNIX Features

• Portable.

• Multi users.

• Multi tasking.

• Networking.

• Device Independences.

• Organized File System.

• Utilities.

• Services.

Department of Information technology 294

UNIX System Architecture

Department of Information technology 295

• Hardware:- The hardware includes all the
parts of a computer including clocks, timers,
devices, parts etc. in the UNIX OS architecture.

• The Kernel:- The kernel is the heart of the
Unix system. The kernel is a part of the
operating system. It interacts directly with the
hardware of the computer through a device
that is built into the kernel.

Department of Information technology 296

The main functions of the kernel are Memory
Management, Controlling access to the
computer, Maintaining the file system,
Handling interrupts, Handling errors,
Performing input and output services, Allocate
the resources of the computer among users.

• The Shell:- Shell is the utility that processes
your requests. when you type in a command
at the terminal, shell interprets the command
and calls the program that you want.

Department of Information technology 297

• There are various commands like cp, mv, cat,
grep, id, wc, nroff, a.out and more.

• Application Layer:- It is the outermost layer
that executes the given external applications.

Department of Information technology 298

VI EDITOR
• The VI editor is a screen editor available on

most UNIX systems.

• When you invoke the vi editor, it copies the
contents of a file to a memory space known as
a buffer.

• Once the data have been loaded into the
buffer, the editor presents a screen full of the
buffer to the user for editing.

• If the file does not exist, an empty buffer is
created.

Department of Information technology 299

Department of Information technology 300

• There are following way you can start using vi
editor −

Command Description

vi filename Creates a new file if it already does not exist, otherwise
opens existing file.

vi -R filename Opens an existing file in read only mode.

view filename Opens an existing file in read only mode

Department of Information technology 301

MODES

• The vi editor uses two basic modes:

the command mode and the text mode.

Command Mode:-

• When the vi editor is in the command mode, any
key that is pressed by the user is considered a
command.

• Commands are used to move the cursor, to
delete or change part of the text, or to perform
many other operations.

Department of Information technology 302

Text Mode:-

• When the vi editor is in the text mode, any key
that is pressed by the user is considered text.

• The keyboard acts as a typewriter.

• In the text mode, the characters typed by the
user, if they are printable characters, are
inserted into the text at the cursor.

Department of Information technology 303

• This means that to add text in a document, we
should first place the cursor at the desired
location. To place the cursor, however, we
must be in the command mode.

• The typical operations, therefore, is to place
the cursor with a command, switch to the text
mode and edit the text, then switch back to
the command mode for the next operation.

Department of Information technology 304

Department of Information technology 305

Changing Modes

• It is clear that we must switch back and forth
between vi command and text modes.

• To tell vi to do something, it must be in the
command mode, to edit text, it must be in the
text mode.

• To invoke vi, you type the following command
at the UNIX prompt:

$ vi filename

Department of Information technology 306

• When you invoke vi, you are always in the
command mode. During the session, you can
move back and forth between the command
mode and the text mode.

• To exit vi, you must be in command mode.

• There are six commands that take you to the
text mode (a, A, i, I, o and O). Use any of these
commands, vi switches immediately to the
text mode.

Department of Information technology 307

• When you are in the text mode, you press the
Escape key (esc) to go to the command mode.

• When you enter vi, you are in the command
mode. To exit vi, you must be in the command
mode.

Department of Information technology 308

COMMANDS

ADD TEXT Commands.

• To insert text, you need to be in the text
mode. The vi editor contains several
commands to change the mode to text.

Department of Information technology 309

1. ADD TEXT COMMANDS

Department of Information technology 310

Command Description

i Inserts text before current location.

I Inserts text at the beginning of the current line.

a Appends text after current character.

A Appends text at the end of the current line.

o Opens an empty text line for new text after the current line.

O Opens an empty text line for new text before the current line.

Insert Commands (i and I)

Department of Information technology 311

Append Commands (a and A)

Department of Information technology 312

New Line Commands (o or O)

Department of Information technology 313

2. CURSOR MOVE COMMANDS

• To edit text, we need to move the cursor to
the text to be edited.

• The cursor move commands are effective only
in the command mode.

• After the execution of a move command, the
vi editor is still in the command mode.

• There are many cursor move commands,

Department of Information technology 314

Department of Information technology 315

3. DELETION COMMANDS

Department of Information technology 316

Command Function

x Deletes the current character.

dd Deletes the current line.

4. JOIN COMMAND

• Two lines can be combined using join
command (J). The command can be used
anywhere in the first line.

• After the two lines have been joined, the
cursor will be at the end of the first line.

Department of Information technology 317

5. SCROLLING COMMANDS

Department of Information technology 318

Command Function

ctrl + y Scrolls up one line.

ctrl + e Scrolls down one line.

ctrl + u Scrolls up half a screen (12 lines)

ctrl + d Scrolls down half a screen (12 lines)

ctrl + b Scrolls up whole screen (24 lines)

ctrl + f Scrolls down whole screen (24 lines)

• Line Scroll Commands (ctrl + y and ctrl + e).

• Half Screen Commands (ctrl + u and ctrl + d).

• Full Page Commands (ctrl + b and ctrl + f).

Department of Information technology 319

6. UNDO COMMANDS

Department of Information technology 320

Command Function

u Undoes only the last edit

U Undoes all changes on the current line.

7. SAVING AND EXIT COMMANDS

Department of Information technology 321

Command Function

:w Saves the contents of the buffer without quitting vi.

:w filename Writes contents of buffer to new file and continues.

ZZ Saves the contents of the buffer and exits.

:wq Saves the contents of the buffer and exits.

:q Exits the vi (if buffer changed will not exit).

:q! Exits the vi without saving.

DIRECTORY HANDLING SYSTEM
CALLS

• The basic handling system calls provided by
unix operating system are

1. opendir()

2. readdir()

3. rewinddir()

4. closedir()

5. mkdir()

6. rmdir()

7. umask()

8. seekdir()

9. telldir()

• opendir(): - opendir() function opens the
director passed to it.

• Syntax: -

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

DIR *fdopendir(int fd);

• Description: -

• The opendir() function opens a directory
stream corresponding to the directory name,
and returns a pointer to the directory stream.

• The stream is positioned at the first entry in
the directory.

• The fdopendir() function is like opendir(), but
returns a directory stream for the directory
referred to by the open file descriptor fd.

• After a successful call to fdopendir(), fd is
used internally by the implementation, and
should not otherwise be used by the
application.

• Return Value: - The opendir() and fdopendir()
functions return a pointer to the directory
stream.

• On error, NULL is returned, and errno is set
appropriately.

http://man7.org/linux/man-pages/man3/errno.3.html

• readdir(): - The readdir() function takes
pointer to a DIR structured returned by
opendir() to read the directory.

• Syntax: -

#include <linux/types.h>

#include <linux/dirent.h>

int readdir(unsigned int fd, struct dirent
*dirp, unsigned int count);

• Return Value: -

• On success, 1 is returned. On end of directory,
0 is returned. On error, -1 is returned,
and errno is set appropriately.

• rewinddir(): - The rewinddir() function
rewinds , that is, reposition the pointer at the
first entry in the directory.

• Syntax: -

#include <sys/types.h>

#include <dirent.h>

void rewinddir(DIR *dirp);

• Description: - The rewinddir() function resets
the position of the directory stream dirp to
the beginning of the directory.

• Return Value: -

The rewinddir() function returns no value.

• closedir(): - The closedir() function closes the
directory passed to it.

• Syntax: -

#include <sys/types.h>

#include <dirent.h>

int closedir(DIR *dirp);

https://linux.die.net/include/sys/types.h
https://linux.die.net/include/dirent.h

• Description: -

• The closedir() function closes the directory
stream associated with dirp. A successful call
to closedir() also closes the underlying file
descriptor associated with dirp. The directory
stream descriptor dirp is not available after
this call.

• Return Value: - The closedir() function returns
0 on success. On error, -1 is returned,
and errno is set appropriately.

• mkdir(): - mkdir() function is used to create
directories. It creates a new, empty directory.

• Syntax: -

#include <sys/stat.h>

#include <sys/types.h>

int mkdir(const char *pathname, mode_t
mode);

• Description: -

• mkdir() attempts to create a directory
named pathname.

• The parameter mode specifies the permissions
to use. It is modified by the process’s umask in
the usual way: the permissions of the created
directory are (mode & ~umask & 0777). Other
mode bits of the created directory depend on
the operating system.

• Return Value: - mkdir() returns zero on
success, or -1 if an error occurred (in which
case, errno is set appropriately).

• rmdir(): - rmdir() function is useful to delete
the directories.

• Syntax: -

#include <unistd.h>

int rmdir(const char *pathname);

• Description: - rmdir() deletes a directory,
which must be empty.

• Return Value: - On success, zero is returned.
On error, -1 is returned, and errno is set
appropriately.

• umask(): - The umask() function sets the new
umask value of the calling process and returns
the old umask value. This function never
return an error.

• Syntax: -

#include<sys/types.h>

#inlcude<sys/stat.h>

mode_t umask(mode_t new_umask);

• The new_umask argument is specified as the
bitwise ‘OR’ of any of the file access
permission constants such as S_IRUSR,
S_IWUSR, S_IXUSR etc;

• seekdir(): - set position of directory stream

• Syntax: -

#include <sys/types.h>

#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

http://pubs.opengroup.org/onlinepubs/7908799/xsh/systypes.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/dirent.h.html

• Description: -

• The seekdir() function sets the position of the
next readdir() operation on the directory
stream specified by dirp to the position
specified by loc. The value of loc should have
been returned from an earlier call to telldir().
The new position reverts to the one
associated with the directory stream
when telldir() was performed.

http://pubs.opengroup.org/onlinepubs/7908799/xsh/readdir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/telldir.html

• If the value of loc was not obtained from an
earlier call to telldir() or if a call
to rewinddir() occurred between the call
to telldir() and the call to seekdir(), the results
of subsequent calls toreaddir() are
unspecified.

• Return Value: -

The seekdir() function returns no value.

http://pubs.opengroup.org/onlinepubs/7908799/xsh/telldir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/rewinddir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/telldir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/readdir.html

• telldir(): - current location of a named
directory stream

• Syntax: -

#include <dirent.h>

long int telldir(DIR *dirp);

http://pubs.opengroup.org/onlinepubs/7908799/xsh/dirent.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/dirent.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/dirent.h.html

• Description: -

• The telldir() function obtains the current location
associated with the directory stream specified
by dirp. If the most recent operation on the
directory stream was a seekdir(), the directory
position returned from the telldir() is the same as
that supplied as a loc argument for seekdir().

• Return Value: -

Upon successful completion, telldir() returns the
current location of the specified directory stream

http://pubs.opengroup.org/onlinepubs/7908799/xsh/seekdir.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/seekdir.html

fork Function

• An existing process can create a new one by
calling the fork function.

• The new process created by fork is called
the child process.

• This function is called once but returns twice.

• The only difference in the returns is that the
return value in the child is 0, whereas the
return value in the parent is the process ID of
the new child.

• The two main reasons for fork to fail

• If too many processes are already in the
system, which usually means that something
else is wrong.

• If the total number of processes for this real
user ID exceeds the system’s limit.

vfork Function

• Both fork() and vfork() are the system
calls that creates a new process that is
identical to the process that invoked fork() or
vfork().

• Using fork()allows the execution of parent and
child process simultaneously. The other
way, vfork() suspends the execution of parent
process until child process completes its
execution.

• The primary difference between the fork() and
vfork() system call is that the child process
created using fork has separate address space
as that of the parent process.

• On the other hand, child process created using
vfork has to share the address space of its
parent process.

exit Functions

• _exit, _Exit - terminate the current process

• The function _exit() terminates the calling
process "immediately".

• Any open file descriptors belonging to the
process are closed; any children of the
process are inherited by process 1, init, and
the process’s parent is sent
a SIGCHLDsignal.

wait function

• When a process terminates, either normally or
abnormally, the kernel notifies the parent by
sending the SIGCHLD signal to the parent.

• Because the termination of a child is an
asynchronous event (it can happen at any
time while the parent is running).

• This signal is the asynchronous notification
from the kernel to the parent.

• The parent can choose to ignore this signal, or
it can provide a function that is called when
the signal occurs: a signal handler. The default
action for this signal is to be ignored.

• A process that calls wait or waitpid can:

1. Block, if all of its children are still running

2. Return immediately with the termination
status of a child, if a child has terminated and
is waiting for its termination status to be
fetched.

3. Return immediately with an error, if it
doesn’t have any child processes

• The differences between these two functions
are:

• The wait function can block the caller until a
child process terminates, whereas waitpid has
an option that prevents it from blocking.

• The waitpid function doesn’t wait for the child
that terminates first; it has a number of
options that control which process it waits for.

wait3 and wait4 Functions

• Most UNIX system implementations provide
two additional functions: wait3 and wait4,
with an additional argument rusage that
allows the kernel to return a summary of the
resources used by the terminated process and
all its child processes.

exec Functions

• One use of the fork function is to create a new
process (the child) that then causes another
program to be executed by calling one of
the exec functions.

• When a process calls one of
the exec functions, that process is completely
replaced by the new program which starts
executing at its main function.

• The process ID does not change across
an exec, because a new process is not created.

• exec merely replaces the current process (its
text, data, heap, and stack segments) with a
brand-new program from disk.

• There are seven different exec functions:

• The first four take a pathname argument, the
next two take a filename argument, and the
last one takes a file descriptor argument.

system Function

• It is convenient to execute a command string
from within a program.

UNIX System process control primitives:

• fork creates new processes

• exec functions initiates new programs

• exit handles termination

• wait functions handle waiting for termination

• Process control commands in Unix are:

• bg - put suspended process into background

• fg - bring process into foreground

• jobs - list processes

• Jobs Command : Jobs command is used to list
the jobs that you are running in the
background and in the foreground.

• If the prompt is returned with no information
no jobs are present.

• Syntax :

jobs [JOB]

• Options

• -l Lists process IDs in addition to the normal
information.

• -n List only processes that have changed
status since the last notification.

• -p Lists process IDs only.

• -r Restrict output to running jobs.

• -s Restrict output to stopped jobs.

DIRECTORY RELATED UTILITES

1. pwd

2. ls

3. mkdir

4. cd

5. rmdir

Department of Information technology 372

1. pwd

• The command used to determine the current
directory is print working directory (pwd).

• It has no options and no attributes.

Example:-

• $pwd

Department of Information technology 373

Department of Information technology 374

2. ls
• The list command lists the contents in a

directory. Depending on the options used, it
can list files, directories or subdirectories.

Syntax:-

• $ls [options] [path]

Example:-

• $ls

Department of Information technology 375

ls command options

1. ls –a:- List all files including hidden files.

Department of Information technology 376

2. ls –A:- List all files including hidden files
except for “.” and “. .”.

3. ls –R:- List all files recursively, descending
down the directory tree from the given path.

Department of Information technology 377

4. ls –l:- List the files in long format. i.e., with an
index number, owner name, group name, size
and permissions.

Department of Information technology 378

5. ls –o:- List the files in long format but without
the group name.

6. ls –g:- List the files in long format but without
the owner name.

7. ls –i:- List the files along with their index
number.

Department of Information technology 379

8. ls –s :- List the files along with their size.

9. ls –S:- Sort the list by size, with the largest at
the top.

10. ls –r:- Reverse the sorting order.

11. ls -1:- there will be situations in which you
want the filenames printed as a column rather
than several files in one line

Department of Information technology 380

3. mkdir
• To create a new directory, you use the make

directory (mkdir) command.

• It has two options : permission mode and
parent directories.

Syntax:-

• mkdir [options . . .] [directories . . .]

Department of Information technology 381

Example:-

• $mkdir dharani

Department of Information technology 382

To make multiple directories

Syntax:

• mkdir <dirname1> <dirname2> <dirname3> ...

Department of Information technology 383

4. cd

• The cd stands for ‘change directory’ and this
command is used to change the current
directory i.e., the directory in which the user is
currently working.

Syntax:-

• $cd <dirname>

Example:-

• $cd dharani

Department of Information technology 384

Department of Information technology 385

5. rmdir

• When a directory is no longer needed, it
should be removed. The remove directory
(rmdir) command deletes directories.

• But will not be able to delete a directory
including a sub-directory. It means, a directory
has to be empty to be deleted.

Department of Information technology 386

Syntax:

• $rmdir <dirname>

Example:

• $rmdir created

Department of Information technology 387

5.ls
ls [options] [names]
• If no names are given, list the files in the current directory.
• With one or more names, list files contained in a directory name or that

match a file name.
• The options let you display a variety of information in different formats.
Options
-a :List all files, including the normally hidden . files.
-b :Show nonprinting characters in octal.
-c :List files by inode modification time.
-C :List files in columns (the default format, when displaying to a terminal
device).
-d :List only the directory's information, not its contents. (Most useful with -l and
-i.)
-f :Interpret each name as a directory (files are ignored).
-g :Like -l, but omit owner name (show group).
-i :List the inode for each file.
-l :Long format listing (includes permissions, owner, size, modification time, etc.).
-L :List the file or directory referenced by a symbolic link rather than the link
itself.

Department of Information technology 388

-m :Merge the list into a comma-separated series of names.
-n :Like -l, but use user ID and group ID numbers instead of
owner and group names.
-o :Like -l, but omit group name (show owner).
-p :Mark directories by appending / to them.
-q :Show nonprinting characters as ?.
-r :List files in reverse order (by name or by time).
-R :Recursively list subdirectories as well as current directory.
-s :Print sizes of the files in blocks.
-t :List files according to modification time (newest first).
-u :List files according to the file access time.
-x :List files in rows going across the screen.
-1 :Print one entry per line of output.
Examples
List all files in the current directory and their sizes; use
multiple columns and mark special files:
ls -asCF Department of Information technology 389

File Handling Utilities

1. Create file (cat)

2. Edit file (sed)

3. Display file (more)

4. Print file (lpr)

Department of Information technology 390

1. CREATE FILE (cat)

• The most common tool to create a text file is a
text editor such as vi.

• Other utilities, such as cat, that are useful to
create small file.

• The cat command is the most universal and
powerful tool.

Department of Information technology 391

• It can be used to display the content of a file,
copy content from one file to another,
concatenate the contents of multiple files,
display the line number, display $ at the end
of the line, etc

To display file content:-

• The cat command can be used to display the
content of a file.

Department of Information technology 392

Syntax:- $cat <filename>

Example:- $cat jtp.txt

Department of Information technology 393

1. To create a file:-
The cat command can be used to create a new file with
greater than sign (>).
Syntax:- cat > [filename]
Example:- $ cat > hai

Department of Information technology 394

2. To Append the content of a file:-

The cat command with double greater than sign
(>>) append something in your already existing
file.

Syntax:- $cat >> (filename)

Example:- $cat >> hai

Department of Information technology 395

3. To copy file:-

The cat command can be used to copy the
content of a file into another file.

Syntax:- cat (old file name) > (new file name)

Example:- $cat combo>combo2

Department of Information technology 396

4. To concatenate file:-

The cat command can be used to concatenate
the contents of multiple files in a single new file.

Syntax:- cat <file1> <file2>......> <new file>

Example:- $cat file1 file2 file3 > combo

Department of Information technology 397

5. To Insert a new file:-

A new line will be inserted while
concatenating multiple files by using a
hyphen (-).

syntax:

cat -
<filename1> <filename2>. . . . > <new filena
me>

Example:

cat - file1 file2 file3 >combo

Department of Information technology 398

Department of Information technology 399

6. cat –n command:-

The 'cat -n' option displays line numbers in front
of each line in a file.

Syntax: cat -n <fileName>

Example: cat -n jtp.txt

Department of Information technology 400

7. cat –b:-

The 'cat -b' option removes the empty lines.

Syntax: cat -b (file name)

Example: cat -b jtp.txt

Department of Information technology 401

8. cat –e command:-

The 'cat-e' option displays a '$' sign at the end
of every line.

Syntax: cat -e <fileName>

Example: cat -e program

9. cat command (as an end marker): -

• The 'cat << EOF ' option displays an end
marker at the end of a file.

• It is called here directive and file content will
be saved at the given end marker.

• The file can be saved with the help of 'ctrl + d
' keys also. It works like the end marker.

Syntax: cat << EOF

Example: cat > exm.txt << EOF

2. EDIT FILE (sed)

• UNIX provides several utilities to edit text files.
The most common is a basic text editor such
as vi.

• In addition, there are others that, such as sed,
that provide powerful search and edit tools.

• All of the basic edit utilities can create a file,
but only some can edit one.

Syntax:

• command | sed 's/<oldWord>/<newWord>/'

Example:

• echo class7 | sed 's/class/jtp/'

• echo class7 | sed 's/7/10/'

• cat msg.txt | sed 's/learn/study/'

Global Replacement

• To edit every word we have to use
a global replacement 'g'. It will edit all the
specified word in a file or string.

Syntax:

• command | sed 's/<oldWord>/<newWord>/

Example:

• echo class7 class9 | sed 's/class/jtp/g'

• cat msg.txt | sed 's/learn/study/g'

Removing a Line:-

• The 'd' option will let you to remove a
complete line from a file.

• You only need to specify a word from that line
with 'd' option and that line will be deleted.

• But please note that all the lines having that
same word will be deleted.

Syntax:

• cat <fileName> | sed '/<Word>/d'

Example:

• cat msg.txt | sed '/jtp/d'

3. DISPLAY FILE (more)

• As 'cat' command displays the file content.
Same way 'more' command also displays the
content of a file.

• Only difference is that, in case of larger files,
'cat' command output will scroll off your
screen while 'more' command displays output
one screen ful at a time.

Syntax: more <file name>

Example: more /var/log/udev

Options
Option Explanation

-c Clears screen before displaying

-d Displays error messages

-f Does not screen wrap long lines.

-l Ignores form feed characters.

-r Displays control characters in format ^C

-s Squeezes multiple blank lines (leaving only one blank line in output)

-u Suppresses text underlining

-w Waits at end of output for user to enter any key to continue

-lines Sets the number of lines in a screen (default is screen size -2)

+nmbr Starts output at the indicated line number (nmbr)

+/ptrn Locates first occurrence of pattern (ptrn) and starts output two lines
before it.

• If there is more than one screen of data, more
displays one screen, less two lines.

• At the bottom of the screen, it displays the
message “- - -more- - - (dd%)”.

• This message indicates that there are ore lines
in the file and how much has been displayed
so far.

• To display the next screen, key the space bar.

4. Print file

• The most common print utility is line printer
(lpr).

Operations Common to Both

• The operations that are common to both
directories and regular files are

1. copy (cp)

2. move (mv)

3. rename (mv)

4. link (ln)

5. delete (rm)

6. find (find)

1. Copy (cp) command

• The copy (cp) utility creates a duplicate of a
file, a set of files, or a directory.

• If the source is a file , the new file contains an
exact copy of the data in the source file.

• If the source is a directory, all of the files in
the directory are copied to the destination,
which must be a directory.

• If the destination file already exists, its
contents are replaced by the source file
contents.

• The cp command copies both text and binary
files.

Syntax:-

• cp <existing file name> <new file name>

cp command Option
• The copy command has three options:

preserve attributes (-p)

interactive (-i)

recursion (-r)

• Preserve Attributes Option:-

When the destination file exists, its
permissions, owner and group are used rather
than the source file attributes.

• We can force the permissions, owner and
group to be changed, however by using the
preserve (-p) option.

Example:-

• $ cp –p file1 file2

• Interactive Option:-

We can guard against a file being accidentally
deleted by a copy command by using the
interactive (-i) option.

• When the interactive option is specified, copy
asks if we want to delete an existing file.

• If we reply y or yes, the file is replaced. If we
reply n or no, the copy is cancelled.

Example:-

• $cp –i file1 file2

Recursive copy:-

• Another way we can copy a collection of files
is with the recursive (-r) copy.

• The recursive copy copies the whole directory
and all of its subdirectories to a new directory.

Example:-

• $cp –r DirA DirB

2. MOVE (mv) Command

• The move (mv) command is used to move
either an individual file, a list of files, or a
directory.

• After a move, the old file name is gone and
the new file name is found at the destination.

• This is the difference between a move and a
copy.

• After a copy, the file is physically duplicated, it
exists in two places.

• Syntax:-

mv <source file> <destination file>

• The first argument is the name of the file to be
moved.

• The second argument is its destination or, in
the case of a rename, its new name.

mv Options

• Move has only two options:

Interactive (-i)

Force (-f).

• Interactive:- if the destination file already
exists, its contents are destroyed unless we
use the interactive flag (-i) to request that
move warn us.

• Syntax:- $mv –i file1 mvDir

• Force:- When we are not allowed to write a
file, we are asked if we want to destroy the file
or not.

• If we are sure that we want to write it, even if
it already exists, we can skip the interactive
message with the force (-f) option.

• Syntax:- $mv –f file1 mvDir

3. Rename (mv) Command

• UNIX does not have a specific rename
command.

• Recall that the move (mv) command with a
new name (second argument) renames the
file.

4. Link (ln) command

• The ln command is used to create links
between files.

• A link in UNIX is a pointer to a file. Like
pointers in any programming languages, links
in UNIX are pointers pointing to a file or a
directory

• Creating links is a kind of shortcuts to access a
file. Links allow more than one file name to
refer to the same file, elsewhere.

• There are two types of links :

Soft Link or Symbolic links

Hard Links

• These links behave differently when the
source of the link (what is being linked to) is
moved or removed.

• Symbolic links are not updated (they merely
contain a string which is the pathname of its
target).

• Hard links always refer to the source, even if
moved or removed.

• For example, if we have a file a.txt. If we
create a hard link to the file and then delete
the file, we can still access the file using hard
link.

• But if we create a soft link of the file and then
delete the file, we can’t access the file through
soft link and soft link becomes dangling.

• Basically hard link increases reference count of
a location while soft links work as a shortcut
(like in Windows)

Syntax:-

• ln [options] source destination

Example:-

• $ln file1 file2

ln Options

• Link has three options:

Symbolic.

Interactive.

Force.

• Symbolic:- The default link type is hard. To
create a symbolic link, the symbolic option (-s)
is used.

Example:-

• $ln –s file2 1nDir

• Interactive :- If the destination file already
exists, its contents are destroyed unless we
request to be warned by using the interactive
flag (-i).

• When the interactive flag is on link asks if we
want to destroy the existing file.

Example:-

• $ln –i file2 1nDir

• Force:- When we are about to overwrite a file,
we are asked if we want to destroy the file or
not.

• If we are sure that we want to write it, even if
it already exists, we can skip the interactive
message with the force (-f) option.

Example:-

• $ln –f file2 1nDir

5. Remove (rm) Command

• rm stands for remove.

• rm command is used to remove objects such
as files, directories, symbolic links and so on
from the file system like UNIX.

• rm removes references to objects from the file
system, where those objects might have had
multiple references.

• By default, it does not remove directories.

• This command normally works silently and
you should be very careful while
running rm command because once you
delete the files then you are not able to
recover the contents of files and directories.

Syntax:

• rm [OPTION]... FILE...

rm Options

1. -i (Interactive Deletion):-

Like in cp, the -i option makes the command
ask the user for confirmation before
removing each file, you have to press y for
confirm deletion, any other key leaves the file
un-deleted.

• Example:-

• $rm -i d.txt

2. -f (Force Deletion):-

rm prompts for confirmation removal if a file
is write protected.

The -f option overrides this minor protection
and removes the file forcefully.

Example:-

$rm –f e.txt

3. -r (Recursive Deletion):-

• With -r(or -R) option rm command performs
a tree-walk and will delete all the files and
sub-directories recursively of the parent
directory.

• At each stage it deletes everything it finds.

• Normally, rm wouldn’t delete the directories
but when used with this option, it will delete.

6. find Command

• The find command in UNIX is a command line
utility for walking a file hierarchy.

• It can be used to find files and directories and
perform subsequent operations on them.

• It supports searching by file, folder, name,
creation date, modification date, owner and
permissions.

Syntax:-

• find [paths] [expression]

• Its first argument is the path that we want to
search, usually from our home directory.

• The second argument is the criterion that find
needs to complete its search.

Example:-

• $find DirC –name file3 –print

• Find and print the absolute pathname of a file.

• Assume that we are doing our monthly file
backup and want to know all files that were
changed in the last 30 days.

• We can use the find command to list all files
whose modification date (mtime) is within the
last 30 days.

Example:-

• $find DirC –type f –mtime -30

Complete List of find Criteria

Security and File Permission

• The security system in UNIX, like any other
operating system, is designed to control the
access to resources.

User and Groups:-

• In UNIX, everyone who logs on to the system
is called a user. Users are known to the system
by their user ids.

• In UNIX, not every user is created equal.

• Some users have more capabilities than
others. These users are known as super users.
Also known as system administrators.

• Super Users need to have a lot of experience
and a lot of training.

Groups:-

• Users can be organized into groups. A team
working on a project, for example, needs to
share many of the same file.

• Users can belong to multiple groups.

groups Command
• Unix provides a command, groups, to

determine a user’s group.

• You can check your group or any other user’s
group.

• If you enter the command with no user id, the
system responds with your group.

• If a user belongs to multiple user groups, all of
them will be listed.

Syntax:- groups [options] userid

Example:- $groups

Security Levels
• There are three levels of security in UNIX:

System.

Directory.

File.

• The system security is controlled by the
system administrator, a super user.

• The directory and file securities are controlled
by the users who own them.

System Security

• System security controls who is allowed to
access the system. It begins with your login id
and password.

• When the system administrator opens an
account for you, he or she creates an entry in
the system password file.

• The contents of an entry in our password file.

• Home directory:- the login or home directory
when you first log into the system. It is
represented as the absolute pathname for
your home directory.

• Login Shell:- identifies the shell that is loaded
when you login.

Permission Codes

• Both the directory and file security levels use a
set of permission codes to determine who can
access and manipulate a directory or file.

• The permission codes are divided into three
sets of codes.

• The first set contains the permissions of the
owner of the directory or file.

• The second set contains the group
permissions for members in a group as
identified by the group id.

• The third set contains the permissions for
everyone else that is, the general public.

• The code for each set is a triplet representing
read (r), write (w) and execute (x).

Directory level permissions

1. Read permission.

2. Write permission.

3. Execute permission.

File Level Permission

1. Read permission.

2. Write Permission.

3. Execute Permission.

Checking Permission

• To check the permissions of a file or directory,
we use the long list command (ls -l).

Changing Permission (chmod)

• When a directory or a file is created, the
system automatically assigns default
permissions.

• The owner of the directory or file can change
them. To change the permissions, we use the
chmod command.

Syntax:-

• There are two ways to change the permissions:

Symbolic Codes:-

• Octal codes:-

Option:-

• There is only one option, recursion (-R).

• The chmod recursion works just as in other
commands. Starting with the current working
directory, it changes the permissions of all files
and directories in the directory.

• It then moves to the subdirectories and
recursively changes all of their permissions.

User mask (umask) command

• The permissions are initially set for a directory
or file using a three digit octal system variable,
the user mask (mask).

• When a new directory or file is created, the
number in the mask is used to set the default
permissions.

• The default permissions are 777 for a
directory and 666 for a file.

• To display the current user mask setting, use
the umask command with no arguments.

• To set it, use the command with the new mask
setting.

Syntax:-

• umask option code

Example:-

$umask

000

$umask 022

$umask

022

Changing Ownership and Group

• Every directory and file has an owner and a
group. When you create a directory or file,
you are the owner and your group is the
group.

• There are two commands that allow the
owner and group to be changed.

• The change ownership (chown) command can
change the owner or the owner and the
group.

• The change group (chgrp) command can
change only the group.

Change ownership (chown)

• The owner and optionally the group are
changed with the change ownership (chown)
command.

• The new owner may be a login name or a user
id (UID). The group is optional.

• The group does not have to be changed when
the owner is changed. Unless the new owner
is not a member of the current group.

• Only the current owner or super user may
change the ownership or group. This means
that once the ownership is changed, the
original owner cannot claim it back.

• Either the new owner or the system
administrator must change it back.

Syntax:-

Example:-

• $chown forouzan file1

Options:-

• (-R):- when the recursive option is used with a
directory, all files in the directory and all
subdirectories and their files are changed
recursively.

Change Group (chgrp)

• To change the group without changing the
owner, you use the change group (chgrp)
command.

• Syntax:-

Example:-
$chgrp proj15 file2

DISK UTILITIES

1. df

2. du

3. mount

4. umount

df

• The df command, stands for Disk Free, reports
file system disk space usage.

• It displays the amount of disk space available
on the file system in a Linux system.

• The df command reports how much disk
space we have (i.e free space) whereas the du
command reports how much disk space is
being consumed by the files and folders.

•

1. View entire file system disk space usage

Run df command without any arguments to
display the entire file system disk space.

Example:- $ df

The result is divided into six columns.

• Filesystem – the filesystem on the system.

• 1K-blocks – the size of the filesystem,
measured in 1K blocks.

• Used – the amount of space used in 1K blocks.

• Available – the amount of available space in
1K blocks.

• Use% – the percentage that the filesystem is
in use.

• Mounted on – the mount point where the
filesystem is mounted.

2. Display file system disk usage in human
readable format

If you want to display them in human
readable format, use -h flag.

Syntax:-

$df -h

3. Display disk space usage only in MB

To view file system disk space usage only in
Megabytes, use -m flag.

Syntax:-

$ df -m

4. List inode information instead of block
usage

We can list inode information instead of
block usage by using -i flag.

Syntax:-

$ df -i

5. Display the file system type

To display the file system type, use -T flag.

Syntax:-

$ df -T

6. Display only the specific file system type

We can limit the listing to a certain file
systems. for example ext4. To do so, we use -
t flag.

Syntax:-

$ df -t ext4

7. Exclude specific file system type

Some times, you may want to exclude a
specific file system from the result. This can
be achieved by using -x flag.

Syntax:-

$ df -x ext4

8. Display usage for a folder

To display the disk space available and where
it is mounted for a folder, for
example /home/sk/, use this command:

Syntax:-

$ df -hT /home/sk/

du

• du command, short for disk usage, is used to
estimate file space usage.

• The du command can be used to track the files
and directories which are consuming excessive
amount of space on hard disk drive.

Options

mount
• All files in a Linux filesystem are arranged in

form of a big tree rooted at ‘/‘.

• These files can be spread out on various
devices based on your partition table, initially
your parent directory is mounted(i.e attached)
to this tree at ‘/‘, others can be mounted
manually using GUI interface(if available) or
using mount command.

• mount command is used to mount the
filesystem found on a device to big tree
structure(Linux filesystem) rooted at ‘/‘.

• Conversely, another command umount can be
used to detach these devices from the Tree.

• Some Important Options:

• l : Lists all the file systems mounted yet.

• h : Displays options for command.

• V : Displays the version information.

• a : Mounts all devices described at /etc/fstab.

• t : Type of filesystem device uses.

• T : Describes an alternative fstab file.

• r : Read-only mode mounted.

umount

• The umount command detaches the file
system(s) mentioned from the file hierarchy.

• Note that a file system cannot be unmounted
when it is `busy’ – for example, when there
are open files on it, or when some process has
its working directory there, or when a swap
file on it is in use.

• The offending process could even be umount
itself – it opens libc, and libc in its turn may
open for example locale files.

• A lazy unmount avoids this problem

SYNOPSIS

• umount [-hV]

• umount -a [-dflnrv] [-t vfstype] [-O options]

• umount [-dflnrv+ ,dir|device-…

• OPTION :
-V :- Print version information and exit.

-h :- Print a help message and exit.

-v :- Run in verbose mode.

-n :- Unmount without writing in /etc/mtab.

-r :- In case unmounting fails, try to remount read-only.

-d :- In case the unmounted device was a loop device, also
free this loop device.

TEXT PROCESSING UTILITIES

• UNIX provides a number of powerful
commands to process texts in different ways.
These text processing commands are often
implemented as filters.

• Filters are commands that always read their
input from ‘stdin’ and write their output to
‘stdout’.

• By default, when using a shell terminal,
the stdin is from the keyboard, and
the stdout is to the terminal.

• Filters work naturally with pipes. Because a
filter can send its output to the monitor, it can
be used on the left of a pipe, because a filter
can receive its input from the keyboard, it can
be used on the right of a pipe.

• In other words, a filter can be used on the left
of a pipe, between two pipes, and on the right
of a pipe.

• This UNIX text processing commands is
divided into 3 parts.

1. Unix Filters

2. Unix pipes

3. More filter commands like awk and sed.

11. comm

12. join
1. head

2. tail

3. cut

4. Paste

5. sort

6. tr

7. uniq

8. wc

9. cmp

10.diff

head Command

• While the “cat” command copies entire files,
the head command copies a specified number
of lines from the beginning of one or ore files
to the standard output stream.

• By default, it displays starting 10 lines of any
file.

Syntax:

• head <file name>

Example:

• head jtp.txt

Head command for multiple files

• If we'll write two file names then it will display
first ten lines of each file separated by a
heading.

Syntax:

• head <file name> <file name>

Example:

• head doc1.txt doc2.txt

Options:-

1. -n:- The 'head -n' option displays specified
number of lines.

Syntax:

• head -n <file name>

Example:

• head -15 jtp.txt

tail Command

• The tail command also outputs data, only this
time from the end of the file.

Syntax:-

• tail [options] filename

Example:-

• $tail hai.txt

• It has several options. If the option starts with
a plus sign, tail skips N-1 lines before it begins
to output lines from the file and continues
until it gets to the end of the file.

• If it starts with a minus, such as -25, it outputs
the last number of lines specified in the
option.

• If there are no line options, the default is the
last 10 lines.

• We can combine the head and tail commands
to extract lines from the center of a file.

cut Command
• The basic purpose of the cut command is to

extract one or more columns of data from
either standard input or from one or more
files.

• Syntax:-

cut OPTION... [FILE]...

• Since cut looks for columns, we must have
some way to specify where the columns are
located.

• This is done with one of two command
options. We can specify what we want to
extract based on character positions within a
line or by a field number.

Specifying Character Positions:-

• Character positions work well when the data
are aligned in fixed columns.

• City is a string of 15 characters, state is 3
characters (including the trailing space), 1990
population is 8 characters, 1980 population is
8 characters, and work force is 8 characters.

• To specify that the file is formatted with fixed
columns, we use the character option, -c,
followed by one or more column
specifications.

Example:-

• $cut –c1-14,19-25 censusFixed

Field Specification:-

• While the column specification works well
when the data are organized around fixed
columns, it doesn’t work in other situations.

• To specify a field, we use the field option (-f).
Fields are numbered from the beginning of
the line with the first field being field number
one.

Example:-

• $cut –f1 filename

• Note:- The cut command is similar to the head
and tail commands. The cut command cuts
files vertically (columns), whereas the head
and tail commands cut files horizontally
(lines).

paste Command

• Paste command is one of the useful
commands in Unix or Linux operating system.

• It is used to join files horizontally (parallel
merging) by outputting lines consisting of lines
from each file specified, separated by tab as
delimiter, to the standard output.

Syntax:

• paste [OPTION]... [FILES]...

• Without any option paste merges the files in
parallel.

Options:

1. -d (delimiter): Paste command uses the tab
delimiter by default for merging the files.

The delimiter can be changed to any other
character by using the -d option.

If more than one character is specified as
delimiter then paste uses it in a circular
fashion for each file line separation.

• -s (serial): We can merge the files in
sequentially manner using the -s option.

It reads all the lines from a single file and
merges all these lines into a single line with
each line separated by tab.

And these single lines are separated by
newline.

• Combination of -d and -s: The following
example shows how to specify a delimiter for
sequential merging of files:

• –version: This option is used to display the
version of paste which is currently running on
your system.

SORT command
SORT command is used to sort a file, arranging
the records in a particular order.

• SORT command sorts the contents of a text file,
line by line.

• sort is a standard command line program that
prints the lines of its input or concatenation of all
files listed in its argument list in sorted order.

• By default, the entire input is taken as sort
key. Blank space is the default field separator.

• Examples

• Sorting a file : Now use the sort command
Syntax :

• Sort function with mix file i.e. uppercase and
lower case :

When we have a mix file with both uppercase
and lowercase letters then first the lower case
letters would be sorted following with the
upper case letters .

• Example:

• Options with sort function

-o Option :

Unix also provides us with special facilities like
if you want to write the output to a new file,
output.txt, redirects the output like this or you
can also use the built-in sort option -o, which
allows you to specify an output file.

• -r Option: Sorting In Reverse Order : You can
perform a reverse-order sort using the -r flag.
the -r flag is an option of the sort command
which sorts the input file in reverse order i.e.
descending order by default.

• -n Option : To sort a file numerically used –n
option. -n option is also predefined in Unix as
the above options are. This option is used to
sort the file with numeric data present inside.

• -nr option : To sort a file with numeric data in
reverse order we can use the combination of
two options as stated below.

• -k Option : Unix provides the feature of
sorting a table on the basis of any column
number by using –k option.

• -u option : To sort and remove
duplicates pass the -u option to sort. This will
write a sorted list to standard output and
remove duplicates.

This option is helpful as the duplicates being
removed gives us an redundant file.

• -M Option : To sort by month pass the -M
option to sort. This will write a sorted list to
standard output ordered by month name.

• Syntax :

tr Command
• The tr command in UNIX is a command line

utility for translating or deleting characters.

• It supports a range of transformations
including uppercase to lowercase, squeezing
repeating characters, deleting specific
characters and basic find and replace.

• It can be used with UNIX pipes to support
more complex translation. tr stands for
translate.

• Syntax:-

1. How to convert lower case to upper case
To convert from lower case to upper case the
predefined sets in tr can be used.

2. How to translate white-space to tabs

The following command will translate all the
white-space to tabs.

3. How to translate braces into parenthesis

You can also translate from and to a file. In
this example we will translate braces in a file
with parenthesis.

4. How to use squeeze repetition of
characters using -s

To squeeze repeat occurrences of characters
specified in a set use the -s option.

This removes repeated instances of a
character (or) we can say that, you can
convert multiple continuous spaces with a
single space

5. How to delete specified characters using -d
option

To delete specific characters use the -d option.
This option deletes characters in the first set
specified.

6. To remove all the digits from the string,
use

7. How to complement the sets using -c
option

You can complement the SET1 using -c option.
For example, to remove all characters except
digits, you can use the following.

uniq Command
• The uniq command in Linux is a command line

utility that reports or filters out the repeated
lines in a file.

• In simple words, uniq is the tool that helps to
detect the adjacent duplicate lines and also
deletes the duplicate lines.

Syntax of uniq Command :

$uniq [OPTION] [INPUT[OUTPUT]]

Example:

Options

1. Using -c option : It tells the number of
times a line was repeated.

2. Using -d option : It only prints the repeated
lines.

3. Using -D option : It also prints only duplicate
lines but not one per group.

4. Using -u option: It prints only the unique
lines.

5. Using -w option : Similar to the way of
skipping characters, we can also ask uniq to
limit the comparison to a set number of
characters. For this, -w command line option
is used.

6. Using -i option : It is used to make the
comparison case-insensitive.

wc Command

• wc stands for word count. As the name
implies, it is mainly used for counting purpose.

• It is used to find out number of lines, word
count, byte and characters count in the files
specified in the file arguments.

• By default it displays four-columnar output.

• First column shows number of lines present in
a file specified, second column shows number
of words present in the file, third column
shows number of characters present in file
and fourth column itself is the file name
which are given as argument.

Syntax:

• wc [OPTION]... [FILE]...

• Let us consider two files having
name state.txt and capital.txt containing 5
names of the Indian states and capitals
respectively.

• Passing only one file name in the argument.

Options:

1. -l: This option prints the number of
lines present in a file. With this option wc
command displays two-columnar output, 1st
column shows number of lines present in a file
and 2nd itself represent the file name.

2. -w: This option prints the number of
words present in a file. With this option wc
command displays two-columnar output, 1st
column shows number of words present in a
file and 2nd is the file name.

3. -c: This option displays count of
bytes present in a file. With this option it
display two-columnar output, 1st column
shows number of bytes present in a file and
2nd is the file name.

• There are three unix commands that can be
used to compare the contents of two files:

– Compare (cmp)

– Difference (diff)

– Common (comm)

cmp Command

• cmp command in Linux/UNIX is used to
compare the two files byte by byte and helps
you to find out whether the two files are
identical or not.

Syntax:-

• cmp options... FromFile [ToFile]

Example

• $cmp file1.txt file2.txt

Options:-

1. -b(print-bytes) : If you want cmp displays
the differing bytes in the output when used
with -b option.

• The values 154 and 151 in the above output
are the values for these bytes, respectively.

2. -l option : This option makes the cmp
command print byte position and byte value
for all differing bytes.

3. -s option : This allows you to suppress the
output normally produced by cmp
command i.e it compares two files without
writing any messages. This gives an exit value
of 0 if the files are identical, a value of 1 if
different, or a value of 2 if an error message
occurs.

diff command

• diff stands for difference. This command is
used to display the differences in the files by
comparing the files line by line.

• Unlike its fellow members, cmp and comm, it
tells us which lines in one file have is to be
changed to make the two files identical.

https://www.geeksforgeeks.org/cmp-command-linux-examples/
https://www.geeksforgeeks.org/comm-command-linux-examples/

• The important thing to remember is
that diff uses certain special
symbols and instructions that are required to
make two files identical.

• It tells you the instructions on how to change
the first file to make it match the second file.

• Special symbols are:

• Lets say we have two files with
names a.txt and b.txt containing 5 Indian
states.

comm command

• comm compare two sorted files line by line
and write to standard output; the lines that
are common and the lines that are unique.

• Suppose you have two lists of people and you
are asked to find out the names available in
one and not in the other, or even those
common to both.

• comm is the command that will help you to
achieve this.

• It requires two sorted files which it compares
line by line.

Syntax :

• $comm [OPTION]... FILE1 FILE2

Options for comm command:

1. -1 :suppress first column(lines unique to first
file).

2. -2 :suppress second column(lin es unique to
second file).

3. -3 :suppress third column(lines common to
both files).

join Command

• The join command in UNIX is a command line
utility for joining lines of two files on a
common field.

• join command is used to join the two files
based on a key field present in both the files.

Syntax:

• $join [OPTION] FILE1 FILE2

Options

1. using -a FILENUM option : Now, sometimes it
is possible that one of the files contain extra
fields so what join command does in that
case is that by default, it only prints pair able
lines.

What if such unpair able lines are important
and must be visible after joining the files. In
such cases we can use -a option with join
command which will help in displaying such
unpair able lines.

2. using -v option : Now, in case you only want
to print unpair able lines i.e suppress the
paired lines in output then -v option is used
with join command.

3. using -i option : Now, other thing about join
command is that by default, it is case
sensitive.

tee command
• tee command reads the standard input and

writes it to both the standard output and one
or more files.

• The command is named after the T-splitter
used in plumbing. It basically breaks the
output of a program so that it can be both
displayed and saved in a file.

SYNTAX:

• tee [OPTION]... [FILE]...

Options :

1.-a Option : It basically do not overwrite the
file but append to the given file.

2.–help Option : It gives the help message and
exit.

SYNTAX :

• geek@HP:~$ tee --help

3.–version Option : It gives the version
information and exit.

SYNTAX :

• geek@HP:~$ tee --version

pg Command

• The pg command displays the contents of text
files, one page at a time.

• pg is a terminal pager program
on UNIX and Unix-like systems for viewing text
files. It can also be used to page through the
output of a command via a pipe.

https://www.computerhope.com/jargon/t/textfile.htm
https://www.computerhope.com/jargon/t/textfile.htm
https://www.computerhope.com/jargon/t/textfile.htm
https://en.wikipedia.org/wiki/Terminal_pager
https://en.wikipedia.org/wiki/Terminal_pager
https://en.wikipedia.org/wiki/Terminal_pager
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Text_file
https://en.wikipedia.org/wiki/Pipe_(Unix)

Syntax:-

• pg [options] [file...]

Options

Finger Command

• finger displays the .plan file of a specific user,
or reports who is logged into a specific
machine. The user must allow general read
permission on the .plan file.

Syntax

• finger [options] [user[@hostname]]

nl Command

• The nl command, numbers the lines in a file.

Syntax

• nl [OPTION]... [FILE]...

w command

• w command in Linux is used to show who is
logged on and what they are doing.

• This command shows the information about
the users currently on the machine and their
processes.

Syntax:

• w [options] user [...]

https://media.geeksforgeeks.org/wp-content/uploads/20190325162800/Screenshot-from-2019-03-25-16-25-37.png

Options:

• w -h: This option don’t print the header.

Syntax:- $w -h

https://media.geeksforgeeks.org/wp-content/uploads/20190325162802/Screenshot-from-2019-03-25-16-25-49.png

• w -u: This option will ignore the username
while figuring out the current process and cpu
times.

Syntax:- $w -u

https://media.geeksforgeeks.org/wp-content/uploads/20190325162803/Screenshot-from-2019-03-25-16-26-00.png

• w -s : This option uses the short format. It will
not print the login time, JCPU or PCPU times.

Syntax:- $w -s

https://media.geeksforgeeks.org/wp-content/uploads/20190325162805/Screenshot-from-2019-03-25-16-26-12.png

• w –help: This option will display help message
and exit.

Syntax:- $w --help

https://media.geeksforgeeks.org/wp-content/uploads/20190325162810/Screenshot-from-2019-03-25-16-26-43.png

• w -i : This option will display IP address
instead of hostname for from field.

Syntax:- $w -i

https://media.geeksforgeeks.org/wp-content/uploads/20190325162812/Screenshot-from-2019-03-25-16-26-55.png

ulimit Command

• The shell contains a built in command called
"Ulimit" which allows you to display and set
resource limits for users.

• The systems resources are defined in a file
called "/etc/security/limits.conf".

• Ulimit can then be used to view these
settings.

• The basic syntax of the ulimit command
is: ulimit Options limit

Display settings for current user

• To display all of your current settings you can
issue the command: "ulimit -a"

unlink Command

• The unlink command calls and directly
interfaces with the unlink system function,
which removes a specified file.

• Syntax

unlink FILE

unlink OPTION

Options

• --help

Display a help message and exit.

• --version

Output version information and exit.

Examples

• unlink hope.txt

• Removes the file name hope.txt, and if there is no
other hard link to the file data, the file data itself is
removed from the system.

https://www.computerhope.com/jargon/h/hardlink.htm
https://www.computerhope.com/jargon/h/hardlink.htm
https://www.computerhope.com/jargon/h/hardlink.htm

grep command

• The grep filter searches a file for a particular
pattern of characters, and displays all lines
that contain that pattern.

• The pattern that is searched in the file is
referred to as the regular expression (grep
stands for globally search for regular
expression and print out).

Syntax:

• grep [options] pattern [files]

1. Case insensitive search : The -i option
enables to search for a string case insensitively
in the give file. It matches the words like
“UNIX”, “Unix”, “unix”.

2. Displaying the count of number of
matches: We can find the number of lines that
matches the given string/pattern

3. Display the file names that matches the
pattern : We can just display the files that
contains the given string/pattern.

4. Displaying only the matched pattern : By
default, grep displays the entire line which has
the matched string. We can make the grep to
display only the matched string by using the -o
option.

5. Show line number while displaying the
output using grep -n : To show the line
number of file with the line matched.

egrep command

• egrep is a pattern searching command which
belongs to the family of grep functions.

• It treats the pattern as an extended regular
expression and prints out the lines that match
the pattern.

https://www.geeksforgeeks.org/grep-command-in-unixlinux/

Syntax:

• egrep [options] 'PATTERN' files

Example:-

• Note: The egrep command used mainly due to
the fact that it is faster than the grep
command.

• The egrep command treats the meta-
characters as they are and do not require to
be escaped as is the case with grep.

• This allows reducing the overhead of replacing
these characters while pattern matching
making egrep faster than grep or fgrep.

Options: Most of the options for this
command are same as grep

https://www.geeksforgeeks.org/grep-command-in-unixlinux/

fgrep command
• The fgrep filter is used to search for the fixed-

character strings in a file.

• There can be multiple files also to be
searched.

• This command is useful when you need to
search for strings which contain lots of regular
expression metacharacters, such as “^”, “$”,
etc.

Syntax:

• fgrep [options] [-e pattern_list] [pattern] [file]

Options

• -c option: Displaying the count of number of
matches. We can find the number of lines that
match the given string.

Example:

• $fgrep -c "usin.g" para

https://media.geeksforgeeks.org/wp-content/uploads/f-1-1.png

• -h option: To display the matched lines.

Example:

• fgrep -h "usin.g" para

https://media.geeksforgeeks.org/wp-content/uploads/f-2-1.png

• -i option: Used in case insensitive search. It
ignore upper/lower case distinction during
comparisons. It matches words like :
“geeks*forgeeks”, “Geeks*forgeeks”.

Example:

• fgrep -i "geeks*forgeeks" para

https://media.geeksforgeeks.org/wp-content/uploads/f-3-1.png

• -n option: Precede each line by its line
number in the file. It shows line number of file
with the line matched.

Example:

• $ fgrep -n "learni\ng" para

https://media.geeksforgeeks.org/wp-content/uploads/f-5-1.png

Department of Information technology 719

BACK UP UTILITIES

1. tar

2. gzip

3. cpio

1. tar

• The primary function of the UNIX tar
command is to create backups.

• It is used to create a ‘tape archive’ of a
directory tree that could be backed up and
restored from a tape-based storage device.

• The term ‘tar’ also refers to the file format of
the resulting archive file.

Syntax:

• tar [function] [options] [paths]

Options:-

• tar -c: Create a new archive.

• tar -A: Append a tar file to another archive.

• tar -r: Append a file to an archive.

• tar -u: Update files in an archive if the one in
the file system is newer.

• tar -d: Find the diff between an archive and
the file system.

• tar -t: List the contents of an archive.

• tar -x: Extract the contents of an archive.

• Examples:

• Create an archive file containing file1 and
file2

$ tar cvf archive.tar file1 file2

• Create an archive file containing the directory
tree below dir

$ tar cvf archive.tar dir

• List the contents of archive.tar

$ tar tvf archive.tar

• Extract the contents of archive.tar to the
current directory

$ tar xvf archive.tar

2. gzip

• Gzip (GNU zip) is a compressing tool, which is
used to truncate the file size.

• By default original file will be replaced by the
compressed file ending with extension (.gz).

• To decompress a file you can use gunzip
command and your original file will be back.

Compressing Multi Files Together

• If you want to compress more than one file
together, you can use 'cat' and gzip command
with pipe command.

gzip -l

• The 'gzip -l' command tells about the
compression ratio or how much the original
file has compressed.

How To Compress A Directory

• The gzip command will not be able to
compress a directory because it can only
compress a single file. To compress a directory
you have to use 'tar' command.

3. cpio

• cpio stands for “copy in, copy out“. It is used
for processing the archive files
like *.cpio or *.tar.

• This command can copy files to and from
archives.

• Example:-

• Copy-out Mode: Copy files named in name-
list to the archive

Syntax:

cpio -o < name-list > archive

• Copy-in Mode: Extract files from the archive

Syntax:

cpio -i < archive

• Copy-pass Mode: Copy files named in name-
list to destination-directory

Syntax:

cpio -p destination-directory < name-list

UNIT 2
WORKING WITH THE BOURNE SHELL

• What is Shell

• Shell Responsibilities

• Pipes and Input Redirection.

• Output Redirection.

• Here Document.

• The shell as A Programming Language.

• Shell Meta Characters

• Shell Variables.

• Shell Environment.

• Control Structures.

• Shell Script Examples.

Introduction

• When a Linux machine boots up, init process
is initiated first then it executes the shell
scripts in /etc/rc.d to restore the system
configuration analyzing the behaviour of a
system, and possibly modifying it.

• Writing shell scripts is not hard to learn, since
only a fairly small set of shell-specific
operations and options are to be learned.

What is a shell

• The shell is the art of UNIX that is most visible
to the user.

• It receives and interprets the commands
entered by the user.

• To do anything in the system, we must give
the shell a command.

• If the command requires a utility, the shell
requests that the kernel execute the utility.

• If the command requires an application
program, the shell requests that it be run.

• There are two major parts to a shell. The first
is the interpreter.

• The interpreter reads your commands and
works with the kernel to execute them.

• The second part to the shell is a programming
capability that allows you to write a shell
(command) script.

• A shell script is a file that contains shell
commands that perform a useful function. It is
also known as a shell program.

• There are 4 major types of shells are used in
UNIX today.

• Bourne Shell (sh)

• C Shell (csh)

• Korn Shell (ksh)

• Bourne Again Shell (bash)

• The Bourne shell, developed by Steve
Bourne at the AT&T Labs, is the oldest.
Because it is the oldest and most primitive, it
is not used on many systems today.

• The C shell, developed in Berkeley by Bill
Joy, received its name from the fact that its
commands were supposed to look like C
statements.

• The Korn shell, developed by David Korn, also
of the AT&t Labs, is the newest and most
powerful. Because it was developed at the
AT&T Labs, it is compatible with the Bourne
shell.

• The Bourne Again Shell, developed by Steve
Bourne at the AT&T Labs. This shell is widely
used with in the academic community.

• bash provides all the interactive features of
the C shell (csh) and the Korn shell (ksh).

Features of Bash

• Bash is sh-compatible as it derived from the
original UNIX Bourne Shell.

• Bash can be invoked by single-character
command line options (-a, -b, -c, -i, -l, -r, etc.)

• Bash Start-up files are the scripts that Bash reads
and executes when it starts.

• Bash consists of Key bindings by which one can
set up customized editing key sequences.

• Bash contains one-dimensional arrays

• Bash comprised of Control Structures

• Directory Stack in Bash specifies the history of
recently-visited directories within a list.

• Example: pushd builtin is used to add the
directory to the stack, popd is to remove
directory from the stack and dirs builtin is to
display content of the directory stack.

• Bash also comprised of restricted mode for
the environment security. A shell gets
restricted if bash starts with name rbash, or
the bash --restricted, or bash -r option passed
at invocation.

Shell Responsibilities

• Program Execution

• Variables & File name substitution

• I/O Redirection

• Pipeline Hookup

• Environment control

• Interpreted programming Language.

Pipes

• We often need to use a series of commands to
complete a task.

• For example, if we need to see a list of users
logged into the system, we use the who
command.

• However, if we need a hard copy of the list, we
need two commands.

• First, we use who to get the list and store the
result in a file using redirection.

• We can avoid the creation of the intermediate
file by using a pipe (|).

• Pipe is an operator that temporarily saves the
output of one command in a buffer that is
being used at the same time as the input of
the next command.

• The first command must be able to send its
output to standard output; the second
command must be able to read its input from
standard input.

• General command line is as follows:

• Command1 | Command2 | Command3 |
Command4

• Example: -

1. ls –l | more

2. who | lpr

3. who | more

• Pipe is an operator, not a command

Redirection

• Redirection is the process by which we specify
that a file is to be used in place of one of the
standard files.

• With input files, we call it input redirection;
with output files, we call it output redirection.

Input Redirection

• Some commands are designed to take their
input as a stream.

• This stream represents the standard input to a
command.

• Standard input stream has 3 sources:

1. File

2. Keyboard (default)

3. Pipe line

• The input redirection operator is the less
than character (<).

• An arrow pointing to a command, meaning
that the command is to get its input from the
designated file.

• Syntax:- Command < file1

• Example: - wc –l < user

• In the first case, wc knows that it is reading its
input from the file users.

• In the second case, it only knows that it is
reading its input from standard input so it
does not display file name.

Output Redirection

• When we redirect standard output, the
command’s output is copied to a file rather
than displayed on the monitor.

• There are two basic redirection operators for
standard output: > & >>.

• The default redirection output is terminal.

• If you want the file to contain only the output
from this execution of the command, you use one
greater than token (>).

• In this case, when you redirect the output to a file
that doesn’t exist, UNIX creates it and writes the
output.

• Eg: $ who > sample

• On the other hand, if you want to append the
output to the file, the redirection token is two
greater than characters (>>).

• Eg : $ cat file2 >> file1

• Disadvantages of I/O Redirection

• Creation of temporary files.

• Memory wastage.

• Process time becomes slow

Error Redirection

• Command '2>' redirects the error of an
output.

• It helps us you to keep our display less messy
by redirecting error messages.

Here Document (<<)

• When we want to include the text in the script
itself rather than read it from a file.

• This is done with the here document operator
(<<).

Shell as a Programming Language

• Group of commands stored in a file is
called shell script or shell program.

• Shell scripts are slower than compiled
programs, but speed is not a constraint with
certain jobs.

• Shell scripts are not recommended for
number crunching.

• System administrator tasks are often best
handled by shell scripts.

• The activities of the shell are not restricted to
command interpretation alone.

• The shell has a whole set of internal
commands that can be strung together as a
language – with its own variables, conditionals
and loops

Shell meta characters

• There are some special characters that are
recognized by the shell.

• File substitution.

• I/O Redirection.

• Quoting.

• Process Execution

• Positional parameters

• Special parameters

• File substitution.

1. ‘* ’- This is a ‘wildcard’, it matches any string
of zero or more characters, except a leading
‘.’

Example: - ls *.txt

This will list all the files in the current
directory that end with a .txt

2. ‘? ’- This will match any single character.

Example: - ls file?.txt

This will find the files such as file1.txt,
file2.txt etc.

• I/O Redirection

1. > - to redirect standard output to a file.

2. < - to take input from standard input
devices.

3. << - to give input from the terminal.

4. >> - to redirect output and append a file
which contain data.

• Process Execution

1. ; - It is used to execute more than one
command.

Example: - $ date ; cat file1

2. () - It is used to grouping more than one
command.

Example: - #(date;cat file) ; ls

3. & - to execute commands in background mode

Example: - $ ls &

4. && - If we pass two commands for this if
first command is successfully executed then
only it will execute the second command.

Example: - $ ls file && echo file found

5. || - it will executes second command if first
command fails.

Example: - $ ls file || echo not found

• Quoting:

1. \ (back slash): it negates the special property
of the single character followed it.

Example: - echo *

It neglects the properties of * and displays
the * as output

2. ‘ ‘ : Negates the special properties of all
enclosed characters

Example: -

$ x=hello

$ echo ‘ < > $x ? & ‘

The output is : < > $x ? &.

3. “ “ : Negates the special properties of all
enclosed characters except $, ` , \

Example: -

$ x=hello

$ echo “< > $x ? & “

The output is : < > hello ? &.

• Positional parameters: These are used to pass
the parameter for shell script programs.

1. $0 - name of the command or script name.

2. $* or $@ - gives list of arguments.

3. $# - gives number of arguments.

4. $1,$2,… - first argument and second
argument respectively.

Shell variables

• A variable is a location in memory where
values can be stored.

• Each shell allows us to create, store, and
access values in variables.

• Each shell variable must have a name.

• The name of a variable must start with an
alphabetic or underscore (_) character.

• It then can be followed by zero or more
alphanumeric or underscore characters.

• There are two broad classifications of
variables: user-defined and predefined.

• User-defined variables:

• User defined variables are not separately
defined in UNIX.

• The first reference to a variable establishes it.

• The syntax for storing values in variables is the
same for the Korn and Bash shells, but it is
different for the C Shell.

• Eg: $x=10

$ echo $x

Output : 10.

• $ x=UNIX

$ y=$x

$ echo $y

Output : UNIX.

• For removing variables which we are defined
syntax is

• $ unset variablename

• Predefined variables:

• Predefined variables are used to configure a
user’s shell environment.

• Predefined variables can be divided into two
categories:

• shell variables and environmental variables.

• The shell variables are used to customize the
shell itself.

• The environmental variables control the user
environment and can be exported to sub
shells.

• $set is used to display all predefined variables
available in shell.

• Shell Commands:-

• read: Read values for variables; white space
separated words

• Eg: $ read name

Paul

$ echo $name

Output: Paul

• set: Display the values of all shell/system
variables or predefined values and set is also
used to assign values to the positional
parameters.

Eg: $ set `date`

$ echo $@ or echo $*

Output: Thu Sep 8 18:08:40 EDT 2011

• $ echo $1

Output: Thu

• $ shift 1 // this command is used for shifting to next field

$ echo $1

Output: Sep

• Eg: $ set `cat f1`

• $ echo $#

• $ echo $2

• #: Used for comments in Shell Programming

• printf: printf command is used to print the
code formats just like in your C

• Example:

printf "sum is : %d" 100

Output : 100

• expr: expr performs four basic arithmetic
operations and the modulus function. It
handles only integers, decimal portions are
simple truncated or ignored.

• $x=3 y=5

• $expr 3 + 5

• output: 8

• $expr $x + $y

• output: 8

• $z=`expr $x + $y` ; echo $z

• output: 8

• $x=`expr $x + 1`

• $echo $x

• output: 4

The Environment

• An important UNIX concept is the
environment, which is defined by
environment variables.

• These variables control the behavior of the
system.

• Some are set by the system, others by you, yet
others by the shell, or any program that loads
another program.

• $env command displays only environment
variables.

Variable Significance

• HOME home directory

• PATH Search path for commands

• USER login name

• LOGNAME as above

• TERM Terminal type

• SHELL Users login shell

Control Structures

• Conditional Control Structures:

1. if,

2. if-else,

3. elif,

4. case

if
• if: if command is executed if it test condition is

true

• Syntax :

if command is successful

then

Command

fi

if-else
• if-else executes an action if the exit status of its

test command is true; if false, then
the else action is executed.

• Syntax :

if command is successful
then

command
else

command
fi

elif

• elif allows you to nest if structures, enabling
selection among several alternatives; at the
first true if structure, its commands are
executed and control leaves the
entire elif structure.

• Syntax:

if command is successful

then
command

elif command is successful

then
command

else

command

fi

• Using test or [] to Evaluate Expressions:

• The if conditional can’t handle relational tests
directly, but only with assistance of
the test statement.

• test uses certain operators to evaluate the
condition on its right and returns an exit
status, which is used by if for making
decisions.

• test works in 3 ways:

• Compares two numbers (like test $x –gt $y or [
$x –gt $y]).

• Compares two strings or a single one for a null
value (like test $x = $y).

• Checks a file’s attributes (like test –f $file).

• Numerical comparison operators used
with test:

• Operator Meaning

• -eq Equal to

• -ne Not equal to

• -gt Greater than

• -ge Greater than or equal to

• -lt Less than

• -le Less than or equal to

• String tests with test:

• Test True if

• s1 =s2 String s1 = s2

• s1 != s2 String s1 is not equal to s2

• -n stg String stg is not a null string

• -z stg String stg is a null string

• stg String stg is assigned and not null

• s1 == s2 String s1 = s2 (Korn and Bash
only)

• File Attribute Testing with test:

• Test True If File
• -f file file exists and is a regular file
• -r file file exists and is a readable
• -w file file exists and is a writable
• -x file file exists and is executable
• -d file file exists and is a directory
• -s file file exists and has a size greater than zero
• -e file file exists (korn & bash only)
• -L file file exists and is a symbolic link (korn & bash only)
• f1 -nt f2 f1 is newer than f2 (korn & bash only)
• f1 -ot f2 f1 is older than f2 (korn & bash only)
• f1 -ef f2 f1 is linked to f2 (korn & bash only)

• Eg:

if [-e file]

then

echo “File exists”

fi

case

• case matches the string value to any of several
patterns. If a pattern is matched, its
associated commands are executed.

• Syntax: -

• case expression in
pattern 1) command 1;;

pattern 2) command 2;;

*) command;;

esac

echo -e “Menu \n 1. List of files \n 2. Todays Date
\n 3. Users \n 4. Exit \n

Enter your choice: ”

read choice

case $ choice in

1) ls;;

2) date;;

3) who;;

4) exit;;

*) echo “Invalid Option”

esac

Loop Control Structures

• while,

• For

• until

While

• while executes an action as long as its test
command is true.

Syntax:

while condition is true

do
command

done

• Eg:

while [$x -eq $y]

do

echo $x

done

For in
• for-in is designed for use with lists of values;

the variable operand is consecutively assigned
the values in the list.

• Syntax:

for variable in list

do

command
done

• Eg:

for i in 1 2 3

do

echo $i

done

Output: 1 2 3

Until
• until executes an action as long as its test

command is false.

Syntax:

until command

do

command

done

• Eg:

until [$x -eq $y]

do

echo $x

done

• break: break is designed for breaking the looping
statements

• Eg:
for i in 1 2 3 4 5
do
if [$ i -eq 3];
then

break;
fi
echo $i
done
Output: 1 2

• continue: continue is designed to continue the
loop at specific condition
Eg:
for i in 1 2 3 4 5
do
if [$ i – eq 3];
then

continue;
fi
echo $i
done
Output: 1 2 4 5

Shell Script Example
echo PROGRAM TO FIND BIGGEST OF 3
NUMBERS

echo Enter 3 numbers

read a

read b

read c

if [$a -ge $b] && [$a -ge $c]

then

echo $a is big

elif [$b -ge $c]

then

echo $b is big

else

echo $c is big

fi

